Мышечная система. Характеристика мышечных волокон скелетных мышц Структурно функциональная единица скелетной мышцы

Мышечная ткань осуществляет двигательные функции организма. У части гистологических элементов мышечной ткани имеются сократительные единицы - саркомеры (см. рис. 6-3). Это обстоятельство позволяет различать два типа мышечных тканей. Один из них - по- перечно-полоcатая (скелетная и сердечная) и второй - гладкая. Во всех сократительных элементах мышечных тканей (поперечно-полосатое скелетное мышечное волокно, кардиомиоциты, гладкомышечные клетки - ГМК), а также в немышечных сократительных клетках функционирует актомиозиновый хемомеханический преобразователь. Сократительную функцию скелетной мышечной ткани (произвольная мускулатура) контролирует нервная система (соматическая двигательная иннервация). Непроизвольные мышцы (сердечная и гладкая) имеют вегетативную двигательную иннервацию, а также развитую систему гуморального контроля. Для ГМК характерна выраженная физиологическая и репаративная регенерация. В составе скелетных мышечных волокон присутствуют стволовые клетки (клетки-сателлиты), поэтому скелетная мышечная ткань потенциально способна к регенерации. Кардиомиоциты находятся в фазе G 0 клеточного цикла, а стволовые клетки в сердечной мышечной ткани отсутствуют. По этой причине погибшие кардиомиоциты замещаются соединительной тканью.

Скелетная мышечная ткань

У человека более 600 скелетных мышц (около 40% массы тела). Скелетная мышечная ткань обеспечивает осознанные и осознаваемые произвольные движения тела и его частей. Основные гистологические элементы: скелетные мышечные волокна (функция сокращения) и клетки-сателлиты (камбиальный резерв).

Источники развития гистологических элементов скелетной мышечной ткани - миотомы и нервный гребень.

Миогенный клеточный тип последовательно складывается из следующих этапов: клетки миотома (миграция) → миобласты митотические (пролиферация) → миобласты постмитотические (слияние) → мы-

шечные трубочки (синтез сократительных белков, формирование саркомеров) → мышечные волокна (функция сокращения).

Мышечная трубочка. После ряда митотических делений миобласты приобретают вытянутую форму, выстраиваются в параллельные цепи и начинают сливаться, образуя мышечные трубочки (миотубы). В мышечных трубочках происходит синтез контрактильных белков и сборка миофибрилл - сократительных структур с характерной поперечной исчерченностью. Окончательная дифференцировка мышечной трубочки наступает только после её иннервации.

Мышечное волокно. Перемещение ядер симпласта на периферию завершает формирование поперечно-полосатого мышечного волокна.

Kлетки-сaтеллиты - обособившиеся в ходе миогенеза G 1 -миобласты, расположенные между базальной мембраной и плазмолеммой мышечных волокон. Ядра этих клеток составляют 30% у новорождённых, 4% у взрослых и 2% у пожилых от суммарного количества ядер скелетного мышечного волокна. Клетки-сателлиты - камбиальный резерв мышечной ткани скелетного типа. Они сохраняют способность к миогенной дифференцировке, что обеспечивает рост мышечных волокон в длину в постнатальном периоде. Клетки-сателлиты также участвуют в репаративной регенерации скелетной мышечной ткани.

СКЕЛЕТНОЕ МЫШЕЧНОЕ ВОЛОКНО

Структурно-функциональная единица скелетной мышцы - симпласт - скелетное мышечное волокно (рис. 7-1, рис. 7-7), имеет форму протяжённого цилиндра с заострёнными концами. Этот цилиндр достигает в длину 40 мм при диаметре до 0,1 мм. Термином «оболочка волокна» (сярколемма) обозначают две структуры: плазмолемму симпласта и его базальную мембрану. Между плазмолеммой и базальной мембраной расположены клетки-сателлиты с овальными ядрами. Палочковидной формы ядра мышечного волокна лежат в цитоплазме (саркоплазма) под плазмолеммой. В саркоплазме симпласта расположен сократительный аппарат - миофибриллы, депо Ca 2 + - саркоплазматическая сеть (гладкий эндоплазматический ретикулум), а также митохондрии и гранулы гликогена. От поверхности мышечного волокна к расширенным участкам саркоплазматического ретикулума направляются трубковидные впячивания сарколеммы - поперечные трубочки (Т-трубочки). Рыхлая волокнистая соединительная ткань между отдельными мышечными волокнами (эндомизий) содержит кровеносные и лимфатические сосуды, нервные волокна. Группы мышечных волокон и окружающая их в виде чехла волокнистая соединительная ткань (перимизий) формируют пучки. Их совокупность образует мышцу, плотный соединительнотканный чехол которой именуют эпимизий (рис. 7-2).

Миофибриллы

Поперечная исчерченность скелетного мышечного волокна определяется регулярным чередованием в миофибриллах различно преломляю-

Рис. 7-1. Скелетная мышца состоит из поперечно-полосатых мышечных волокон.

Значительный объём мышечного волокна занимают миофибриллы. Расположение светлых и тёмных дисков в параллельных друг другу миофибриллах совпадает, что приводит к появлению поперечной исчерченности. Структурная единица миофибрилл - саркомер, сформированный из толстых (миозиновых) и тонких (актиновых) нитей. Расположение тонких и толстых нитей в саркомере показано справа и внизу. G-актин - глобулярный, F-актин - фибриллярный актин.

Рис. 7-2. Скелетная мышца в продольном и поперечном разрезе. А - продольный разрез; Б - поперечный разрез; В - поперечный срез отдельного мышечного волокна.

щих поляризованный свет участков (дисков) - изотропных и анизотропных: светлые (Isotropic, I-диски) и тёмные (Anisotropic, А-диски) диски. Разное светопреломление дисков определяется упорядоченным расположением по длине саркомера тонких и толстых нитей; толстые нити находятся только в тёмных дисках, светлые диски не содержат толстых нитей. Каждый светлый диск пересекает Z-линия. Участок миофибриллы между соседними Z-линиями определяют как саркомер. Саркомер. Структурно-функциональная единица миофибриллы, находящаяся между соседними Z-линиями (рис. 7-3). Саркомер образуют расположенные параллельно друг другу тонкие (актиновые) и толстые (миозиновые) нити. I-диск содержит только тонкие нити. В середине I-диска проходит Z-линия. Один конец тонкой нити прикреплён к Z-линии, а другой конец направлен к середине сaркомера. Толстые нити занимают центральную часть сaркомера - А-диск. Тонкие нити частично входят между толстыми. Содержащий только толстые нити участок сaркомера - Н-зона. В середине Н-зоны проходит М-линия. I-диск входит в состав двух сaркомеров. Следовательно, каждый сaр- комер содержит один А-диск (тёмный) и две половины I-диска (светлого), формула саркомера - 1 / 2 I + А + 1 / 2 I.

Рис. 7-3. Саркомер содержит один А-диск (тёмный) и две половины I-диска (светлого). Толстые миозиновые нити занимают центральную часть саркомера. Титин соединяет свободные концы миозиновых нитей с Z-линией. Тонкие актиновые нити одним концом прикреплены к Z-линии, а другим направляются к середине сяркомера и частично входят между толстыми нитями.

Толстая нить. Каждая миозиновая нить состоит из 300-400 молекул миозина и С-белка. Половина молекул миозина обращена головками к одному концу нити, а вторая половина - к другому. Гигантский белок титин связывает свободные концы толстых нитей с Z-линией.

Тонкая нить состоит из актина, тропомиозина и тропонинов (рис. 7-6).

Рис. 7-5. Толстая нить. Молекулы миозина способны к самосборке и формируют веретенообразный агрегат диаметром 15 нм и длиной 1,5 мкм. Фибриллярные хвосты молекул образуют стержень толстой нити, головки миозина расположены спиралями и выступают над поверхностью толстой нити.

Рис. 7-6. Тонкая нить - две спирально скрученные нити F-актина. В канавках спиральной цепочки залегает двойная спираль тропомиозина, вдоль которой располагаются молекулы тропонина.

Саркоплазматическая сеть

Каждая миофибрилла окружена регулярно повторяющимися элементами сaркоплазматического ретикулума - анастомозирующими мембранными трубочками, заканчивающимися терминальными цистернами (рис. 7-7). На границе между тёмным и светлым дисками две смежные терминальные цистерны контактируют с Т-трубочками, образуя так называемые триады. Саркоплазматический ретикулум - модифицированная гладкая эндоплазматическая сеть, выполняющая функцию депо кальция.

Сопряжение возбуждения и сокращения

Сарколемма мышечного волокна образует множество узких впячиваний - поперечных трубочек (Т-трубочки). Они проникают внутрь мышечного волокна и, залегая между двумя терминальными цистернами сaркоплазматического ретикулума, вместе с последними формируют триады. В триадах происходит передача возбуждения в виде потенциала действия плазматической мембраны мышечного волокна на мембрану терминальных цистерн, т.е. процесс сопряжения возбуждения и сокращения.

ИННЕРВАЦИЯ СКЕЛЕТНЫХ МЫШЦ

В скелетных мышцах различают экстрафузальные и интрафузальные мышечные волокна.

Экстрафузальные мышечные волокна, осуществляющие функцию сокращения мышцы, имеет прямую двигательную иннервацию - нервно-мышечный синапс, образованный терминальным ветвлением аксона α-мотонейрона и специализированным участком плазмолеммы мышечного волокна (концевая пластинка, постсинаптическая мембрана, см. рис. 8-29).

Интрафузальные мышечные волокна входят в состав чувствительных нервных окончаний скелетной мышцы - мышечных веретён. Интрафузальные мышеч-

Рис. 7-7. Фрагмент скелетного мышечного волокна. Цистерны саркоплазматического ретикулума окружают каждую миофибриллу. Т-трубочки подходят к миофибриллам на уровне границ между тёмными и светлыми дисками и вместе с терминальными цистернами саркоплазматического ретикулума образуют триады. Между миофибриллами залегают митохондрии.

ные волокна образуют нервно-мышечные синапсы с эфферентными волокнами γ-мотонейронов и чувствительные окончания с волокнами псевдоуниполярных нейронов спинномозговых узлов (рис. 7-9, рис. 8-27). Двигательная соматическая иннервация скелетных мышц (мышечных волокон) осуществляется α- и γ-мотонейронами передних рогов спин-

Рис. 7-9. Иннервация экстрафузальных и интрафузальных мышечных волокон. Экстрафузальные мышечные волокна скелетных мышц туловища и конечностей получают двигательную иннервацию от α-мотонейронов передних рогов спинного мозга. Интрафузальные мышечные волокна в составе мышечных веретён имеют как двигательную иннервацию от γ-мотонейронов, так и чувствительную (афферентные волокна Iа и II типов чувствительных нейронов спинномозгового узла).

ного мозга и двигательных ядер черепных нервов, а чувствительная соматическая иннервация - псевдоуниполярными нейронами чувствительных спинномозговых узлов и нейронами чувствительных ядер черепных нервов. Вегетативная иннервация мышечных волокон не обнаружена, но ГМК стенки кровеносных сосудов скелетных мышц имеют симпатическую адренергическую иннервацию.

СОКРАЩЕНИЕ И РАССЛАБЛЕНИЕ

Сокращение мышечного волокна происходит при поступлении по аксонам двигательных нейронов к нервно-мышечным синапсам (см. рис. 8-29) волны возбуждения в виде нервных импульсов и выброса нейромедиатора ацетилхолина из концевых разветвлений аксона. Дальнейшие события развёртываются следующим образом: деполяризация постсинаптической мембраны → распространение потенциала действия по плазмолемме → передача сигнала через триады на саркоплазматическую сеть → выброс ионов Ca 2 + из саркоплазмати-

ческой сети → взаимодействие тонких и толстых нитей, в результате чего происходит укорочение саркомера и сокращение мышечного волокна → расслабление.

ТИПЫ МЫШЕЧНЫХ ВОЛОКОН

Скелетные мышцы и образующие их мышечные волокна различаются по множеству параметров. Традиционно выделяют красные, белые и промежуточные, а также медленные и быстрые мышцы и волокна.

Красные (окислительные) мышечные волокна небольшого диаметра, окружены массой капилляров, содержат много миоглобина. Их многочисленные митохондрии имеют высокой уровень активности окислительных ферментов (например, сукцинатдегидрогеназы).

Белые (гликолитические) мышечные волокна имеют больший диаметр, в саркоплазме содержится значительное количество гликогена, митохондрии немногочисленны. Для них характерны низкая активность окислительных ферментов и высокая активность гликолитических ферментов.

Промежуточные (окислительно-гликолитические) волокна имеют умеренную активность сукцинатдегидрогеназы.

Быстрые мышечные волокна имеют высокую активность АТФазы миозина.

Медленные волокна имеют низкую АТФазную активность миозина. Реально мышечные волокна содержат комбинации различных характеристик. Поэтому на практике различают три типа мышечных волокон - быстросокращающиеся красные, быстросокращающиеся белые и медленносокращающиеся промежуточные.

РЕГЕНЕРАЦИЯ И ТРАНСПЛАНТАЦИЯ МЫШЦ

Физиологическая регенерация. В скелетной мышце постоянно происходит физиологическая регенерация - обновление мышечных волокон. При этом клетки-сателлиты вступают в циклы пролиферации с последующей дифференцировкой в миобласты и их включением в состав предсуществующих мышечных волокон.

Репаративная регенерация. После гибели мышечного волокна под сохранившейся базальной мембраной активированные клетки-сателлиты дифференцируются в миобласты. Далее постмитотические миобласты сливаются, образуя мышечные трубочки. Синтез сократительных белков начинается в миобластах, а в мышечных трубочках происходят сборка миофибрилл и образование саркомеров. Миграция ядер на периферию и формирование нервно-мышечного синапса завершают образование зрелых мышечных волокон. Таким образом, в ходе репаративной регенерации происходит повторение событий эмбрионального миогенеза.

Трансплантация. При пересадке мышц используют лоскут из широчайшей мышцы спины. Извлечённый из ложа вместе с собствен-

ными сосудами и нервом лоскут трансплантируют в место дефекта мышечной ткани. Начинают применять и перенос камбиальных клеток. Так, при наследственных мышечных дистрофиях в дефектные по гену дистрофина мышцы вводят нормальные по этому признаку в 0 -миобласты. При таком подходе рассчитывают на постепенное обновление дефектных мышечных волокон нормальными.

Сердечная мышечная ткань

Поперечно-полосатая мышечная ткань сердечного типа образует мышечную оболочку стенки сердца (миокард). Основной гистологический элемент - кардиомиоцит.

Кардиомиогенез. Миобласты происходят из клеток спланхнической мезодермы, окружающей эндокардиальную трубку. После ряда митотических делений Gj-ми- областы начинают синтез сократительных и вспомогательных белков и через стадию G 0 -миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму. В отличие от поперечно-полосатой мышечной ткани скелетного типа, в кардиомиогенезе не происходит обособления камбиального резерва, а все кардиомиоциты необратимо находятся в фазе G 0 клеточного цикла.

КАРДИОМИОЦИТЫ

Клетки (рис. 7-21) расположены между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные кровеносные капилляры бассейна венечных сосудов и терминальные ветвления двигательных аксонов нервных клеток вегетативного отдела нервной

Рис. 7-21. Сердечная мышца в продольном (А) и поперечном (Б) разрезе.

системы. Каждый миоцит имеет сарколемму (базальная мембрана + плазмолемма). Различают рабочие, атипичные и секреторные кардиомиоциты.

Рабочие кардиомиоциты

Рабочие кардиомиоциты - морфо-функциональные единицы сердечной мышечной ткани, имеют цилиндрическую ветвящуюся форму диаметром около 15 мкм (рис. 7-22). При помощи межклеточных контактов (вставочные диски) рабочие кардиомиоциты объединены в так называемые сердечные мышечные волокна - функциональный синцитий - совокупность кардиомиоцитов в пределах каждой камеры сердца. Клетки содержат центрально расположенные, вытянутые вдоль оси одно или два ядра, миофибриллы и ассоциированные с ними цистерны саркоплазматического ретикулума (депо Ca 2 +). Многочисленные митохондрии залегают параллельными рядами между миофибриллами. Их более плотные скопления наблюдают на уровне I-дисков и ядер. Гранулы гликогена сконцентрированы на обоих полюсах ядра. Т-трубочки в кардиомиоцитах - в отличие от скелетных мышечных волокон - проходят на уровне Z-линий. В связи с этим Т-трубочка контактирует только с одной терминальной цистерной. В результате вместо триад скелетного мышечного волокна формируются диады.

Сократительный аппарат. Организация миофибрилл и саркомеров в кардиомиоцитах такая же, что и в скелетном мышечном волокне. Одинаков и механизм взаимодействия тонких и толстых нитей при сокращении.

Вставочные диски. На концах контактирующих кардиомиоцитов имеются интердигитации (пальцевидные выпячивания и углубления). Вырост одной клетки плотно входит в углубление другой. На конце такого выступа (поперечный участок вставочного диска) сконцентрированы контакты двух типов: десмосомы и промежуточные. На боковой поверхности выступа (продольный участок вставочного диска) имеется множество щелевых контактов (nexus, нексус), передающих возбуждение от кардиомиоцита к кардиомиоциту.

Предсердные и желудочковые кардиомиоциты. Предсердные и желудочковые кардиомиоциты относятся к разным популяциям рабочих кардиомиоцитов. Предсердные кардиомиоциты относительно мелкие, 10 мкм в диаметре и длиной 20 мкм. В них слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее (25 мкм в диаметре и до 140 мкм в длину), они имеют хорошо развитую систему Т-трубочек. В состав сократительного аппарата миоцитов предсердий и желудочков входят разные изоформы миозина, актина и других контрактильных белков.

Рис. 7-22. Рабочий кардиомиоцит - удлинённой формы клетка. Ядро расположено центрально, вблизи ядра находятся комплекс Гольджи и гранулы гликогена. Между миофибриллами лежат многочисленные митохондрии. Вставочные диски (на врезке) служат для скрепления кардиомиоцитов и синхронизации их сокращения.

Секреторные кардиомиоциты. В части кардиомиоцитов предсердий (особенно правого) у полюсов ядер располагаются хорошо выраженный комплекс Гольджи и секреторные гранулы, содержащие атриопептин - гормон, регулирующий артериальное давление (АД). При повышении АД стенка предсердия сильно растягивается, что стимулирует предсердные кардиомиоциты к синтезу и секреции атриопептина, вызывающего снижение АД.

Атипичные кардиомиоциты

Этот устаревший термин относится к миоцитам, формирующим проводящую систему сердца (см. рис. 10-14). Среди них различают водители ритма и проводящие миоциты.

Водители ритма (пейсмейкерные клетки, пейсмейкеры, рис. 7-24) - совокупность специализированных кардиомиоцитов в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Главное свойство водителей ритма - спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся через электрические синапсы (щелевые контакты) по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов. Проводящие кардиомиоциты - специализированные клетки предсердно-желудочкового пучка Гиса и волокон Пуркинье образуют длинные волокна, выполняющие функцию проведения возбуждения от водителей ритма.

Предсердно-желудочковый пучок. Кардиомиоциты этого пучка проводят возбуждение от водителей ритма к волокнам Пуркинье, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена.

Рис. 7-24. Атипичные кардиомиоциты. А - водитель ритма синусно-предсердного узла; Б - проводящий кардиомиоцит предсердно-желудочкового пучка.

Волокна Пуркинье. Проводящие кардиомиоциты волокон Пуркинье - самые крупные клетки миокарда. В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинье не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинье.

ДВИГАТЕЛЬНАЯ ИННЕРВАЦИЯ СЕРДЦА

Парасимпатическая иннервация осуществляется блуждающим нервом, а симпатическая - адренергическими нейронами шейного верхнего, шейного среднего и звездчатого (шейно-грудного) ганглиев. Терминальные отделы аксонов вблизи кардиомиоцитов имеют варикозные расширения (см. рис. 7-29), регулярно расположенные по длине аксона на расстоянии 5-15 мкм друг от друга. Вегетативные нейроны не образуют нервно-мышечных синапсов, характерных для скелетной мышцы. Варикозности содержат нейромедиаторы, откуда и происходит их секреция. Расстояние от варикозностей до кардиомиоцитов в среднем составляет около 1 мкм. Молекулы нейромедиаторов высвобождаются в межклеточное пространство и путём диффузии достигают своих рецепторов в плазмолемме кардиомиоцитов. Парасимпатическая иннервация сердца. Преганглионарные волокна, идущие в составе блуждающего нерва, заканчиваются на нейронах сердечного сплетения и в стенке предсердий. Постганглионарные волокна преимущественно иннервируют синусно-предсердный узел, предсердно-желудочковый узел и предсердные кардиомиоциты. Парасимпатическое влияние вызывает уменьшение частоты генерации импульсов пейсмейкерами (отрицательный хронотропный эффект), снижение скорости проведения импульса через предсердно-желудочковый узел (отрицательный дромотропный эффект) в волокнах Пуркинье, уменьшение силы сокращения рабочих предсердных кардиомиоцитов (отрицательный инотропный эффект). Симпатическая иннервация сердца. Преганглионарные волокна нейронов интермедиолатеральных столбов серого вещества спинного мозга образуют синапсы с нейронами паравертебральных ганглиев. Постганглионарные волокна нейронов среднего шейного и звездчатого ганглиев иннервируют синусно-предсердный узел, предсердно-желудочковый узел, предсердные и желудочковые кардиомиоциты. Активация симпатических нервов вызывает увеличение частоты спонтанной деполяризации мембран водителей ритма (положительный хронотропный эффект), облегчение проведения импульса через предсердно-желудочковый узел (положи-

тельный дромотропный эффект) в волокнах Пуркинье, увеличение силы сокращения предсердных и желудочковых кардиомиоцитов (положительный инотропный эффект).

Гладкая мышечная ткань

Основной гистологический элемент гладкомышечной ткани - гладкомышечная клетка (ГМК), способная к гипертрофии и регенерации, а также к синтезу и секреции молекул межклеточного матрикса. ГМК в составе гладких мышц формируют мышечную стенку полых и трубчатых органов, контролируя их моторику и величину просвета. Регуляцию сократительной активности ГМК осуществляют двигательная вегетативная иннервация и множество гуморальных факторов. Развитие. Камбиальные клетки эмбриона и плода (спланхномезодерма, мезенхима, нейроэктодерма) в местах закладки гладкой мускулатуры дифференцируются в миобласты, а затем - в зрелые ГМК, приобретающие вытянутую форму; их сократительные и вспомогательные белки формируют миофиламенты. ГМК в составе гладких мышц находятся в фазе G 1 клеточного цикла и способны к пролиферации.

ГЛАДКОМЫШЕЧНАЯ КЛЕТКА

Морфо-функциональная единица гладкой мышечной ткани - ГМК. Заострёнными концами ГМК вклиниваются между соседними клетками и образуют мышечные пучки, в свою очередь формирующие слои гладкой мускулатуры (рис. 7-26). В волокнистой соединительной ткани между миоцитами и мышечными пучками проходят нервы, кровеносные и лимфатические сосуды. Встречаются и единичные ГМК, например, в подэндотелиальном слое сосудов. Форма ГМК - вытя-

Рис. 7-26. Гладкая мышца в продольном (А) и поперечном (Б) разрезе. На поперечном срезе миофиламенты видны как точки в цитоплазме гладкомышечных клеток.

нутая веретеновидная, часто отростчатая (рис. 7-27). Длина ГМК от 20 мкм до 1 мм (например, ГМК матки при беременности). Овальное ядро локализовано центрально. В саркоплазме у полюсов ядра расположены хорошо выраженный комплекс Гольджи, многочисленные митохондрии, свободные рибосомы, саркоплазматический ретикулум. Миофиламенты ориентированы вдоль продольной оси клетки. Базальная мембрана, окружающая ГМК, содержит протеогликаны, коллагены типов III и V. Компоненты базальной мембраны и эластин межклеточного вещества гладких мышц синтезируются как самими ГМК, так и фибробластами соединительной ткани.

Сократительный аппарат

В ГМК актиновые и миозиновые нити не формируют миофибрилл, характерных для поперечно-полосатой мышечной ткани. Молекулы

Рис. 7-27. Гладкомышечная клетка. Центральное положение в ГМК занимает крупное ядро. У полюсов ядра находятся митохондрии, эндоплазматический ретикулум и комплекс Гольджи. Актиновые миофиламенты, ориентированные вдоль продольной оси клетки, прикреплены к плотным тельцам. Миоциты формируют между собой щелевые контакты.

гладкомышечного актина образуют стабильные актиновые нити, при- креплённые к плотным тельцам и ориентированные преимущественно вдоль продольной оси ГМК. Миозиновые нити формируются между стабильными актиновыми миофиламентами только при сокращении ГМК. Сборку толстых (миозиновых) нитей и взаимодействие актиновых и миозиновых нитей активируют ионы кальция, поступающие из депо Са 2 +. Непременные компоненты сократительного аппарата - кальмодулин (Са 2 +-связывающий белок), киназа и фосфатаза лёгкой цепи гладкомышечного миозина.

Депо Ca 2 + - совокупность длинных узких трубочек (саркоплазматический ретикулум) и находящихся под сарколеммой многочисленных мелких пузырьков (кавеолы). Са 2 +-АТФаза постоянно откачивает Са 2 + из цитоплазмы ГМК в цистерны саркоплазматического ретикулума. Через Са 2+ -каналы кальциевых депо ионы Са 2+ поступают в цитоплазму ГМК. Активация Са 2+ -каналов происходит при изменении мембранного потенциала и при помощи рецепторов рианодина и инозитолтрифосфата. Плотные тельца (рис. 7-28). В саркоплазме и на внутренней стороне плазмолеммы находятся плотные тельца - аналог Z-линий попереч-

Рис. 7-28. Сократительный аппарат гладкомышечной клетки. Плотные тельца содержат α-актинин, это аналоги Z-линий поперечно-полосатой мышцы. В саркоплазме они связаны сетью промежуточных филаментов, в местах их прикрепления к плазматической мембране присутствует винкулин. Актиновые нити прикреплены к плотным тельцам, миозиновые миофиламенты формируются при сокращении.

но-полосатой мышечной ткани. Плотные тельца содержат α-актинин и служат для прикрепления тонких (актиновых) нитей. Щелевые контакты связывают соседние ГМК и необходимы для проведения возбуждения (ионный ток), запускающего сокращение ГМК.

Сокращение

В ГМК, как и в других мышечных тканях, работает актомиозиновый хемомеханический преобразователь, но АТФазная активность миозина в гладкомышечной ткани приблизительно на порядок величины ниже активности АТФазы миозина поперечно-полосатой мышцы. Медленное образование и разрушение актин-миозиновых мостиков требуют меньшего количества АТФ. Отсюда, а также из факта лабильности миозиновых нитей (их постоянная сборка и разборка при сокращении и расслаблении соответственно) вытекает важное обстоятельство - в ГМК медленно развивается и длительно поддерживается сокращение. При поступлении сигнала к ГМК сокращение клетки запускают ионы кальция, поступающие из кальциевых депо. Рецептор Са 2 + - кальмодулин.

Расслабление

Лиганды (атриопептин, брадикинин, гистамин, VIP) связываются с их рецепторами и активируют G-белок (G s), который в свою очередь активирует аденилатциклазу, катализирующую образование цАМФ. Последний активирует работу кальциевых насосов, откачивающих Са 2 + из саркоплазмы в полость саркоплазматического ретикулума. При низкой концентрации Са 2 + в саркоплазме фосфатаза лёгких цепей миозина осуществляет дефосфорилирование лёгкой цепи миозина, что приводит к инактивации молекулы миозина. Дефосфорилированный миозин теряет сродство к актину, что предотвращает образование поперечных мостиков. Расслабление ГМК заканчивается разборкой миозиновых нитей.

ИННЕРВАЦИЯ

Симпатические (адренергические) и отчасти парасимпатические (холинергические) нервные волокна иннервируют ГМК. Нейромедиаторы диффундируют из варикозных терминальных расширений нервных волокон в межклеточное пространство. Последующее взаимодействие нейромедиаторов с их рецепторами в плазмолемме вызывает сокращение либо расслабление ГМК. Существенно, что в составе многих гладких мышц, как правило, иннервированы (точнее находятся рядом с варикозными терминалями аксонов) далеко не все ГМК. Возбуждение ГМК, не имеющих иннервации, происходит двояко: в меньшей степени - при медленной диффузии нейромедиаторов, в большей степени - посредством щелевых контактов между ГМК.

ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ

Рецепторы плазмолеммы ГМК многочисленны. В мембрану ГМК встроены рецепторы ацетилхолина, гистамина, атриопептина, ангиотензина, адреналина, норадреналина, вазопрессина и множество других. Агонисты, связываясь со своими ре-

цепторами в мембране ГМК, вызывают сокращение или расслабление ГМК. ГМК разных органов различно реагируют (сокращением либо расслаблением) на одни и те же лиганды. Это обстоятельство объясняется тем, что существуют разные подтипы конкретных рецепторов с характерным распределением в разных органах.

ТИПЫ МИОЦИТОВ

В основе классификации ГМК находятся различия в их происхождении, локализации, иннервации, функциональных и биохимических свойствах. По характеру иннервации гладкие мышцы делятся на единично и множественно иннервированные (рис. 7-29). Единично иннервированные гладкие мышцы. Гладкие мышцы желудочно-кишечного тракта, матки, мочеточника, мочевого пузыря состоят из ГМК, образующих многочисленные щелевые контакты друг с другом, формируя большие функциональные единицы для синхронизации сокращения. При этом прямую двигательную иннервацию получают лишь отдельные ГМК функционального синцития.

Рис. 7-29. Иннервация гладкомышечной ткани. А. Множественно иннервированная гладкая мышца. Каждая ГМК получает двигательную иннервацию, щелевые контакты между ГМК отсутствуют. Б. Единично иннервированная гладкая мышца. Ин-

нервированы лишь отдельные ГМК. Смежные клетки связаны многочисленными щелевыми контактами, образующими электрические синапсы.

Множественно иннервированные гладкие мышцы. Каждая ГМК мышцы радужки (расширяющие и суживающие зрачок) и семявыносящего протока получает двигательную иннервацию, что позволяет осуществлять тонкую регуляцию сокращения мышц.

Висцеральные ГМК происходят из мезенхимных клеток спланхнической мезодермы и присутствуют в стенке полых органов пищеварительной, дыхательной, выделительной и половой систем. Многочисленные щелевые контакты компенсируют сравнительно бедную иннервацию висцеральных ГМК, обеспечивая вовлечение всех ГМК в процесс сокращения. Сокращение ГМК медленное, волнообразное. Промежуточные филаменты образованы десмином.

ГМК кровеносных сосудов развиваются из мезенхимы кровяных островков. ГМК образуют единично иннервированную гладкую мышцу, но функциональные единицы не такие большие как в висцеральной мускулатуре. Сокращение ГМК сосудистой стенки опосредуют иннервация и гуморальные факторы. Промежуточные филаменты содержат виментин.

РЕГЕНЕРАЦИЯ

Вероятно, среди зрелых ГМК присутствуют недифференцированные предшественники, способные к пролиферации и дифференцировке в дефинитивные ГМК. Более того, дефинитивные ГМК потенциально способны к пролиферации. Новые ГМК возникают при репаративной и физиологической регенерации. Так, при беременности в миометрии происходит не только гипертрофия ГМК, но и значительно увеличивается их общее количество.

Немышечные сокращающиеся клетки Миоэпителиальные клетки

Миоэпителиальные клетки имеют эктодермальный генез и экспрессируют белки, характерные и для эктодермального эпителия (цитокератины 5, 14, 17), и для ГМК (гладкомышечные актин, α-актинин). Миоэпителиальные клетки окружают секреторные отделы и выводные протоки слюнных, слёзных, потовых, молочных желёз, прикрепляясь при помощи полудесмосом к базальной мембране. От тела клетки отходят отростки, охватывающие эпителиальные клетки желёз (рис. 7-30). Стабильные актиновые миофиламенты, прикреплённые к плотным тельцам, и нестабильные миозиновые, формирующиеся в процессе сокращения, - сократительный аппарат миоэпителиальных клеток. Сокращаясь, миоэпителиальные клетки способствуют продвижению секрета из концевых отделов по выводным протокам желёз. Ацетил-

Рис. 7-30. Миоэпителиальная клетка. Корзинчатой формы клетка окружает секреторные отделы и выводные протоки желёз. Клетка способна к сокращению, обеспечивает выведение секрета из концевого отдела.

холин стимулирует сокращение миоэпителиальных клеток слёзных и потовых желёз, норадреналин - слюнных желёз, окситоцин - лактирующих молочных желёз.

Миофибробласты

Миофибробласты проявляют свойства фибробластов и ГМК. Их находят в разных органах (например, в слизистой оболочке кишечника эти клетки известны как «перикриптальные фибробласты»). При заживлении раны часть фибробластов начинает синтезировать гладкомышечные актины и миозины и тем самым способствуют сближению раневых поверхностей.

Каждое мышечное волокно представляет собой гигантскую многоядерную клетку – симпласт, образованную в процессе эмбрионального развития организма путем слияния множества отдельных клеток – миобластов.

Строение мышечного волокна существенно отличается от строения других клеток. Важнейшие отличительные особенности - это размеры, форма, многоядерность, наличие сократительного аппарата. Строение мышечного волокна представлено на рис. 60.

Рис. 60. Важнейшие структурные элементы мышечного волокна

Остановимся на важнейших структурных элементах мышечного волокна.

Сарколемма. Снаружи мышечное волокно окружено оболочкой – сарколеммой , обладающей высокой прочностью и эластичностью. Эти свойства сарколеммы обеспечиваются присутствием в ней большого количества эластичных волокон белков коллагена и эластина, образующих густую сеть.

Сарколемма обладает избирательной проницаемостью, пропуская внутрь клетки преимущественно те вещества, для превращения которых там имеются условия – ферментные системы. В сарколемме присутствуют специальные транспортные системы, с помощью которых поддерживается, в частности, разница в концентрации ионов Na + , К + , Сl ‾ внутри и снаружи мышечного волокна, что обеспечивает формирование на его поверхности мембранного потенциала.

К каждому мышечному волокну подходит окончание двигательного нерва. Место прикрепления нервного окончания к мышечному волокну называется нервно-мышечным синапсом. .

Внутри мышечного волокна находятся многочисленные клеточные органеллы, важнейшими из которых являются ядра, митохондрии, рибосомы и др. Функции указанных органелл описаны в главе 2 (2.5.1). Пространство между органеллами заполнено внутриклеточной жидкостью – саркоплазмой. Среди структурных элементов мышечного волокна наибольший объем занимают сократительные нити– миофибриллы.

Миофибриллы. Миофибриллы представляют собой длинные тонкие нити, расположенные вдоль мышечного волокна. Количество миофибрилл в мышечных волокнах может колебаться в диапазоне от нескольких десятков до полутора и более тысяч. Под влиянием систематической мышечной тренировки, особенно скоростно-силовой направленности, количество миофибрилл может увеличиваться. Напротив, ограничение двигательной активности сопровождается уменьшением количества миофибрилл. Строение мышечных миофибрилл представлено на рис. 61
Рис. 61. Строение миофибрилл



При рассмотрении в оптический микроскоп видно, что миофибриллы имеют повторяющуюся поперечную исчерченность – темные и светлые полосы (диски). Темные диски (А-диски) в центральной части имеют более светлую полосу (Н-зону). Светлые диски (I-диски) в центре пересекаются узкой темной полосой (линией Z). Участок миофибрилл между двумя линиями Z получил название саркомера. Количество саркомеров в миофибрилле зависит от длины мышечного волокна и может достигать нескольких сотен. Длина саркомеров у разных людей может различаться.

Исследование срезов мышечных волокон в электронном микроскопе показали, что каждая миофибрилла состоит из большого числа параллельно расположенных толстых и тонких нитей (филаментов), которые характеризуются строгим взаимным распределением. Толстые нити находятся в зоне А-дисков. Они построены из белка миозина. Миозин является важнейшим сократительным белком, на его долю приходится около 55% от общего количества сократительных белков. Молекула миозина имеет длинную фибриллярную (удлиненную) часть и глобулярную (округлой формы) головку. Фибриллярная часть имеет двухспиральную полипептидную конфигурацию. Функция фибриллярной части молекулы миозина связана с формированием структуры толстой миозиновой нити.

Глобулярные головки миозиновых нитей имеют два активных центра, один из которых обладает АТФ-азной активностью (способностью расщеплять молекулы АТФ), другой – способностью связываться с активными центрами на актиновых нитях (актинсвязывающий центр). Головки молекул миозина располагаются на поверхности миозиновых нитей, образуя выпячивания (отростки). При этом они строго ориентированы в пространстве – располагаются шестью продольными рядами. Толстая миозиновая нить состоит как бы из двух частей, зеркально повторяющих друг друга. Если ее разрезать по- середине, то образуются два совершенно одинаковых фрагмента.

Молекулы миозина обладают способностью связывать ионы Са 2+ и Мg 2+ . Ионы кальция являются кофактором фермента АТФ-азы (в его отсутствии фермент не активен). Ионы магния обеспечивают миозину способность связывать молекулы АТФ и АДФ.

В зоне светлых дисков (I-дисков) расположены тонкие нити, построенные из белков актина, тропомиозина и тропонина. Актин – второй в количественном отношении сократительный белок, составляющий основу актиновых нитей. Тропомиозин – структурный белок актиновых нитей, имеющий фибриллярную форму. Сдвоенные молекулы тропомиозина обвивают актиновые нити. Тропонин является регуляторным белком актиновых нитей. Он существует в трех формах, одна из которых блокирует взаимодействие актина с миозином. Другая форма способна связывать ионы кальция, благодаря чему изменяется конформация молекул первой формы тропонина и открывается центр взаимодействия актина с миозином. Третья форма тропонина обеспечивает крепление первых двух форм на актиновой нити. Кроме того, в составе тонких актиновых нитей имеется белок актинин. Он содержится в зоне линии Z, выполняющей роль своеобразной перегородки, и обеспечивает прикрепление к ней концов актиновых нитей.

К числу важнейших структурных элементов мышечного волокна относится саркоплазматический ретикулум. Саркоплазматический ретикулум - это внутриклеточная система взаимосвязанных пузырьков и канальцев (цистерн), пронизывающих клетку и особенно плотно концентрирующихся в зоне соприкосновения актиновых и миозиновых нитей.

Саркоплазматический (в клетках других органов и тканей – эндоплазматический) ретикулум имеется в каждой клетке организма человека. Но в мышечном волокне он выполняет несколько необычные по сравнению с другими клетками функции. Основная его роль в мышечном волокне заключается в регуляции содержания ионов кальция возле актиновых и миозиновых нитей. В состоянии расслабления ретикулум связывает ионы Са 2+ , их концентрация в саркоплазме составляет примерно 10 -7 моль·литр -1 . Под воздействием двигательного импульса ионы кальция освобождаются из ретикулума и их концентрация повышается до 10 -5 моль·литр -1 .

Способность саркоплазматического ретикулума связывать и высвобождать в цитоплазму ионы Са 2+ связана с локализацией на его внутренней поверхности особых кальций связывающих белков. На поверхности ретикулума располагаются также рибосомы – особые внутриклеточные образования, в которых осуществляется синтез белков.

Мышечное волокно имеет также систему трубчатых выпячиваний сарколеммы (Т-систему ), направленных внутрь мышечного волокна и располагающихся между миофибриллами и саркоплазматическим ретикулумом. Т-система обеспечивает быстрое распространение волны возбуждения от сарколеммы вглубь волокна.

В мышечном волокне содержатся и другие внутриклеточные органеллы: митохондрии, лизосомы. Функции этих структур мышечного волокна уже были описаны в главе «Общие закономерности обмена веществ».

Мышечное волокно содержит не одно, а несколько ядер, которые располагаются не в центральной части волокна, а по периметру, непосредственно под сарколеммой

Типы мышечных волокон

В скелетных мышцах выделяют несколько типов мышечных волокон, различающихся по своим двигательным характеристикам, соотношению различных химических и структурных компонентов, особенностям структурной организации. К основным типам мышечных волокон относятся медленносокращающиеся (МС) и быстросокращающиеся (БС). Медленносокращающиеся волокна в связи с более высоким содержанием в них миоглобина называют еще красными (или тип I). Быстросокращающиеся, для которых характерно более низкое содержание миоглобина, называют белыми (или тип II) . Следует сразу оговориться, что различить эти два типа волокон по цвету практически невозможно. Цвет у одних и у других красный.

Бытрые и медленные волокна более чем в два раза различаются по максимальной скорости сокращения. Так, время одиночного сокращения МС достигает 110 мс, а БС – 50 мс. Кроме того, БС более чем в два раза превышают МС по своим силовым характеристикам.

Существенно различаются разные типы волокон по уровню развития различных механизмов преобразования энергии. МС волокна имеют хорошо развитый механизм аэробного ресинтеза АТФ, что обеспечивается большим количеством митохондрий и высоким содержанием ферментов аэробного биологического окисления, а также большими запасами субстратов аэробного окисления: гликогена, жиров. В МС волокнах содержится больше белка миоглобина, благодаря которому они имеют больший запас кислорода и более благоприятные условия для перехода кислорода из крови внутрь волокна.

В БС волокнах значительно больше миофибрилл, выше АТФ-азная активность, больше концентрация ионов кальция.

Внутри БС волокон различают два подтипа: БС а и БС б. Эти два подтипа отличаются, главным образом, разным уровнем развития важнейших механизмов преобразования энергии. У волокон БС а более хорошо развит анаэробный гликолиз и несколько слабее, чем у МС волокон - аэробный путь ресинтеза АТФ. Они являются ведущими при выполнении упражнений т.н. субмаксимальной мощности, продолжительность которых колеблется в диапазоне от 30 сек до 2-3 мин, при условии выполнения работы с максимальной для данной продолжительности интенсивностью.

У волокон БС б, наряду с анаэробным гликолизом хорошо развит креатинфосфатный механизм ресинтеза АТФ. Они подключаются при выполнении упражнений максимальной и околомаксимальной интенсивности: бег на 100 м, упражнения с большими отягощениями и т.п.

Сказанное не означает, что упражнения указанной интенсивности, выполняются исключительно одним типом мышечных волокон. Речь идет о степени их вовлечения в работу, что, безусловно, определяется центральной нервной системой. Выполнение упражнений, мощность которых не превышает 20-25% от максимально возможной для данного индивидуума обеспечивается только «красными» мышечными волокнами. При работе, интенсивность которой находится в диапазоне 25-40% от максимальной, к ее выполнению подключаются волокна БС а. Если интенсивность упражнения превышает 40% от максимальной, в работу вовлекаются волокна БС б.

При повышении интенсивности упражнения в пределах каждой зоны мощности увеличивается участие в ее обеспечении волокон всех типов, но в наибольшей степени тех, которые подключаются к работе в данном диапазоне мощности.

Различные типы мышечных волокон различаются и условиями иннервации. Мотонейроны, иннервирующие БС мышечные волокна, более толстые, они имеют более разветвленную сеть нервных окончаний (ветвей аксонов), благодаря чему иннервируют значительно большее количество мышечных волокон (от300 до 500). У БС волокон больше зона прилегания нервного окончания к мышечному волокну, что создает более благоприятные условия для иннервации и возникновения потенциала действия.

Волокна скелетных мышц не одинаковы по своим механическим и метаболическим особенностям. Типы волокон различаются на основе следующих характеристик:

В зависимости от максимальной скорости укорочения - быстрые волокна и медленные волокна ;

В зависимости от главного пути образования АТФ - оксидативные волокна и гликолитические волокна .

Быстрые и медленные мышечные волокна содержат изоферменты миозина , которые расщепляют АТФ с разной максимальной скоростью; этому соответствует различная максимальная скорость рабочего цикла поперечных мостиков и, следовательно, укорочения волокна. Высокая АТФазная активность миозина свойственна быстрым волокнам, более низкая - медленным волокнам. Хотя в быстрых волокнах скорость рабочего цикла примерно в четыре раза выше, чем в медленных, поперечные мостики обоих типов генерируют одинаковую силу.

Другой подход к классификации волокон скелетных мышц основан на различиях ферментативных механизмов синтеза АТФ. В некоторых волокнах много митохондрий , и, следовательно, обеспечивается высокий уровень окислительного фосфорилирования ; это оксидативные волокна . Количество образующейся в них АТФ зависит от снабжения мышцы кровью, с которой поступают молекулы кислорода и богатых энергией соединений. Волокна этого типа окружены многочисленными капиллярами. Кроме того, в них присутствует связывающий кислород белок - миоглобин , увеличивающий скорость диффузии кислорода, а также выполняющий роль кратковременного кислородного депо в мышечной ткани. Благодаря значительному содержанию миоглобина оксидативные волокна окрашены в темно-красный цвет; их часто называют красными мышечными волокнами.

Кроме того, рассмотренные три типа мышечных волокон характеризуются разной устойчивостью к утомлению . Быстрые гликолитические волокна утомляются через короткое время, тогда как медленные оксидативные волокна очень выносливы, что позволяет им длительно поддерживать сократительную активность практически при постоянном уровне напряжения. Быстрые оксидативные волокна занимают промежуточное место по способности противостоять развитию утомления ( рис. 30.29).

Характеристики трех типов волокон скелетных мышц обобщены в табл. 30.3 .

Различают три типа скелетных мышечных волокон в зависимости от максимальной скорости укорочения и преобладающего способа образования АТФ: медленные оксидативные, быстрые оксидативные и быстрые гликолитические.

Разная максимальная скорость укорочения быстрых и медленных волокон обусловлена различиями АТФазы миозина: высокой и низкой АТФазной активности соответствуют быстрые и медленные волокна.

Быстрые гликолитические волокна имеют в среднем больший диаметр, чем оксидативные, и потому развивают более значительное напряжение, но быстрее утомляются.

Все мышечные волокна одной двигательной единицы принадлежат к одному и тому же типу; большинство мышц содержат все три типа двигательных единиц.

Характеристики трех типов скелетных мышечных волокон обобщены в

Физическая нагрузка реализуется в результате согласованных действий скелетной мускулатуры. Рассмотрим основные характеристики их структуры и функции.

Взаимодействие человека с внешней средой не может осуществляться без сокращений его мышц. Производимые при этом движения необходимы как для выполнения простейших манипуляций, так и для выражения самых тонких мыслей и чувств - посредством речи, письма, с помощью мимики или жестов. Масса мышц намного больше, чем других органов; они составляют 40-50% массы тела. Мышцы - это «машины», преобразующие химическую энергию непосредственно в механическую (работу) и в теплоту. Деятельность их, в частности механизм укорочения и генерирования силы, сейчас можно достаточно детально объяснить на молекулярном уровне с использованием физических и химических законов.

Рис 1. Структура скелетных мышц: организация цилиндрических волокон в скелетной мышце, прикрепленной к костям сухожилиями.

Понятие скелетная, или поперечно-полосатая мышца относится к группе мышечных волокон, связанных соединительной тканью (рис. 1 ). Обычно мышцы прикреплены к костям пучками коллагеновых волокон - сухожилиями, находящимися на обоих концах мышцы. В некоторых мышцах одиночные волокна имеют такую же протяженность, как и вся мышца, но в большинстве случаев волокна короче и часто располагаются под углом к продольной оси мышцы. Есть очень длинные сухожилия, они прикреплены к кости, удаленной от конца мышцы. Например, некоторые мышцы, осуществляющие движения пальцев рук, находятся в предплечье; шевеля пальцами, мы чувствуем, как двигаются мышцы кисти. Эти мышцы соединены с пальцами посредством длинных сухожилий

Что такое скелетная мышца?

Один грамм ткани скелетной мышцы содержит примерно 100 мг «сократительных белков» - актина (молекулярная масса 42000) и миозина (молекулярная масса 500 000).

Скелетная мышца, например, бицепс, по виду кажется единым образованием, но на самом деле состоит из тканей нескольких типов. В состав каждой мышцы входят длинные тонкие цилиндрические мышечные волокна (клетки), вытянутые по всей ее длине; поэтому они могут быть очень длинными. Каждая многоядерная мышечная клетка (волокно) окружена параллельными мышечными волокнами, с которыми связана слоем соединительной ткани под названием эндомизий. Эти волокна собраны в пучки, скрепленные слоем соединительной ткани, под названием перимизий. Такая упакованная группа, или связка, волокон называется мышечным пучком. Группы пучков с прилегающими к ним сосудами и нервами связаны друг с другом с помощью еще одного слоя соединительной ткани под названием эпимизий. Собранные вместе и окруженные эпимизием пучки, которые тянутся по всей длине скелетной мышцы, покрыты сверху слоем соединительной ткани, называемым фасцией.

Какова функция фасции в скелетной мышце?

Фасция - это упругая, плотная и прочная соединительнотканная оболочка, которая покрывает мышцу целиком и, выходя за ее пределы, образует фиброзное сухожилие. Фасция образована посредством слияния всех трех внутренних слоев соединительной ткани скелетной мышцы. Фасция отделяет мышцы друг от друга, уменьшает трение при движении и формирует сухожилие, с помощью которого мышца прикрепляется к костному скелету. Этому компоненту мышц обычно не уделяется должного внимания. Тем не менее, многие специалисты полагают, что для свободного неограниченного движения мышцы, а, следовательно, и сустава совершенно необходимо свободное движение фасции.

Рис. 2. Структура скелетных мышц: структурная организация филаментов в волокне скелетной мышцы, создающая картину поперечных полос.

Почему скелетная мышца называется поперечно-полосатой?

При изучении с помощью светового микроскопа, основной характеристикой волокон скелетной мышцы оказалось чередование светлых и темных полос, поперечных по отношению к длинной оси волокна. Поэтому скелетные мышцы были названы поперечно-полосатыми.

Поперечная исчерченность волокон скелетной мышцы обусловлена особым распределением в их цитоплазме многочисленных толстых и тонких «нитей» (филаментов), объединяющихся в цилиндрические пучки диаметром 1-2 мкм - миофибриллы (рис. 2 ). Мышечное волокно практически заполнено миофибриллами, они тянутся по всей его длине и на обоих его концах соединены с сухожилиями. Миофибриллы состоят из сократительных филаментов (белков). Основных сократительных микро-филаментов два - миозин и актин. Структурное расположение этих белков придает скелетной мышце вид перемежающихся светлых и темных полос. Каждая темная полоса (полоса, или диск, А) соответствует участку, где актиновые и миозиновые белки перекрываются, тогда как более светлая полоса - участку, где их перекрытия нет (полоса, или диск, I). Перегородки, называемые Z-пластинками, разделяют их на несколько компартментов-саркомеров - длиной примерно по 2,5 мкм.

Что является структурной единицей мышечной ткани скелетной мышцы?

Структурной единицей мышечной ткани скелетной мышцы являются мышечные клетки, которые существенно отличаются от других мышечных тканей, прежде всего от гладких мышц

Гладкое мышечное волокно - это веретеновидная клетка диаметром от 2 до 10 мкм. В отличие от многоядерных волокон скелетных мышц, которые после завершения дифференцировки уже не могут делиться, гладкие мышечные волокна обладают единственным ядром и способны к делению на протяжении всей жизни организма. Деление начинается в ответ на разнообразные паракринные сигналы, часто - на повреждение ткани.

Поперечно-полосатые мышцы скелета состоят из множества функциональных единиц - мышечных волокон, которые расположены в общем соединительнотканном футляре. Каждое волокно скелетной мышцы - это тонкое (диаметром 0,01-0,1 мм), вытянутое на 2-3 см, многоядерное образование - симпласт-результат слияния многих клеток. Ядра в волокне расположены около его поверхности. Пучки мышечных волокон окружены коллагеновыми волокнами и соединительной тканью; между волокнами также находится коллаген. На конце мышц коллаген вместе с соединительной тканью образует сухожилия, которые служат для прикрепления мышц к разным частям скелета. Каждое волокно окружено мембраной - сарколеммой, которая по своему строению сходна с плазматической мембраной.

Основной особенностью мышечного волокна является наличие в его цитоплазме - саркоплазме большого количества тонких нитей - миофибрилл, расположенных вдоль оси волокна. Миофибриллы состоят из чередующихся светлых и темных участков - дисков, что придает мышечному волокну поперечную исчерченность (полосатость).

Рис 3. Организация миозиновых и актиновых нитей в расслабленном и сократившемся саркомере.

Что такое саркомер?

Это минимальная сократительная единица скелетной мышцы.

Рассмотрим более детальноструктуру саркомеров, которая схематически показана на рис 3 . С помощью светового микроскопа в них можно видеть регулярно чередующиеся поперечные светлые и темные полосы. Согласно теории Хаксли и Хансон, такая поперечная полосатость миофибрилл обусловлена особым взаиморасположением актиновых и миозиновых филаментов. Середину каждого саркомера занимают несколько тысяч «толстых» нитей миозина диаметром примерно по 10 нм. На обоих концах саркомера находятся около 2000 «тонких» (толщиной по 5 нм) нитей актина, прикрепленных к Z-пластинкам наподобие щетинок в щетке.

Толстые филаменты сосредоточены в средней части каждого саркомера, где они лежат параллельно друг другу; эта область выглядит как широкая темная (анизотропная) полоса, называемая А-полосой. В обеих половинах саркомера находится по набору тонких филаментов. Один конец каждого из них прикреплен к так называемой Z-пластинке (или Z-линии, или Z-полосе) - сети из переплетающихся белковых молекул, - а другой конец перекрывается с толстыми филаментами. Саркомер ограничен двумя последовательно расположенными Z-полосами. Таким образом, тонкие филаменты двух соседних саркомеров закреплены на двух сторонах каждой Z-полосы.

В пределах А-полосы каждого саркомера различают еще две полоски. В центре А-полосы видна узкая светлая полоска - Н-зона. Она соответствует промежутку между противостоящими друг другу концами двух наборов тонких филаментов каждого саркомера, т.е. включает только центральные части толстых филаментов. Посередине Н-зоны находится совсем тонкая темная М-линия. Это сеть белков, соединяющих центральные части толстых филаментов. Кроме того, от Z-полосы к М-линии идут филаменты белка титина, связанные одновременно с белками М-линии и с толстыми филаментами. М-линия и титиновые филаменты поддерживают упорядоченную организацию толстых филаментов в середине каждого саркомера. Таким образом, толстые и тонкие филаменты не являются свободными, незакрепленными внутриклеточными структурами.

Рис 4. Функция поперечных мостиков. А. Модель механизма сокращения

Обсудим собственно механизм мышечного сокращения

Каким образом взаимодействуют актин и миозин?

Активные участки молекулы актина, способные связывать глобулярные головки миозина, располагаются на ней на некотором расстоянии друг от друга. Когда эти активные участки открыты, миозиновая головка самопроизвольно связывается с актиновым филаментом и образует поперечный мостик. При снабжении миозиновой головки достаточным количеством энергии глобулярная головка подтягивает актин по направлению к центру саркомера, что часто называют храповым движением. Это движение укорачивает саркомер.

Работа поперечных мостиков (Рис. 4) . Во время сокращения каждая миозиновая головка может связывать миозиновую нить с соседними актиновыми. Движение головок создает объединенное усилие, как бы «гребок», продвигающий актиновые нити к середине саркомера. Сама биполярная организация молекул миозина обеспечивает противоположную направленность скольжения актиновых нитей в левой и правой половинах саркомера. В результате однократного движения поперечных мостиков вдоль актиновой нити саркомер укорачивается только на 2 х 10 нм, т. е. примерно на 1% своей длины. За счет ритмичных отделений и повторных прикреплений миозиновых головок актиновая нить может подтягиваться к середине саркомера, подобно тому, как группа людей тянет длинную веревку, перебирая ее руками. Следовательно, когда принцип «вытягивания веревки» реализуется во множестве последовательных саркомеров, повторяющиеся молекулярные движения поперечных мостиков приводят к макроскопическому движению. При расслаблении мышцы миозиновые головки отделяются от актиновых нитей. Поскольку актиновые и миозиновые нити могут легко скользить друг относительно друга, сопротивление расслабленных мышц растяжению очень низкое. Их можно снова растянуть до исходной длины, приложив совсем небольшое усилие. Следовательно, удлинение мышцы во время расслабления носит пассивный характер.

Рис 5. Функция поперечных мостиков. Б. Модель механизма генерирования силы поперечными мостиками: слева до, справа - после «гребка

Генерирование мышечной силы . Благодаря упругости поперечных мостиков саркомер может развивать силу даже без скольжения нитей относительно друг друга, т. е. в строго изометрических экспериментальных условиях. Рис.5.Б иллюстрирует такой процесс генерирования изометрической силы. Сначала головка миозиновой молекулы прикрепляется к актиновой нити под прямым углом. Затем она наклоняется под углом примерно 45°, возможно, благодаря притяжению между соседними точками прикрепления на ней и на актиновой нити. При этом головка действует как миниатюрный рычаг, приводя внутреннюю упругую структуру поперечного мостика (видимо, «шейки» между головкой и миозиновой нитью) в напряженное состояние. Возникающее в результате упругое растяжение достигает лишь около 10 нм. Упругое натяжение, создаваемое индивидуальным поперечным мостиком, так слабо, что для развития мышечной силы, равной 1 мН, нужно объединить усилия, по крайней мере, миллиарда таких соединенных параллельно мостиков. Они будут тянуть соседние актиновые нити, как команда игроков тянет канат. Даже при изометрическом сокращении поперечные мостики не находятся в непрерывно напряженном состоянии (это наблюдается только при трупном окоченении). На самом деле каждая миозиновая головка уже через сотые или десятые доли секунды отделяется от актиновой нити; однако через такое же короткое время следует новое прикрепление к ней. Несмотря на ритмичное чередование прикреплений и отделений с частотой порядка 5 - 50 Гц, сила, развиваемая мышцей в физиологических условиях, остается неизменной (исключение - летательные мышцы насекомых), так как статистически в каждый момент времени в прикрепленном, обусловливающем напряжение, состоянии находится одно и то же количество мостиков.

Что такое цикл поперечного мостика?

Цикл поперечного мостика - это термин, описывающий взаимодействие глобулярной головки миозина с активным участком молекулы актина. Формированию поперечного мостика способствуют два фактора: повышение внутриклеточной концентрации ионов кальция и присутствие аденозинтрифосфата (АТФ). Один цикл поперечного мостика состоит из:

активации миозиновой головки;

обнажения активного участка молекулы актина в присутствии кальция;

самопроизвольного формирования поперечного мостика;

поворота глобулярной головки, сопровождающегося продвижением актиновой нити и укорочением саркомера;

отцепления поперечного мостика.

Цикл после завершения может повторяться или останавливаться. Поворот миозиновой головки называется также рабочим ходом.

Чем предотвращается спонтанное взаимодействие миозина и актина после отцепления поперечного мостика? Каков механизм циклического формированию поперечного мостика – повторяющегося взаимодействия глобулярной головки миозина с активным участком молекулы актина?

Для понимания всего этого необходимо внимательнее рассмотреть строение миозина и, особенно, актина.

Рис. 6. Строение миозина

Это единое название большой семьи протеинов, имеющих определенные отличия в клетках разных тканей. Миозин присутствует у всех эукариотов. Около 60 лет назад было известно два типа миозина, которые сейчас называют миозин I и миозин II. Миозин II был первым из числа открытых миозинов, и именно он принимает участие в мышечном сокращении. Позднее были открыты миозин I и миозин V (рис. 6 В ). В последнее время показано, что миозин II участвует в мышечном сокращении, тогда как миозин I и миозин V вовлечены в работу подмембранного (кортикального) цитоскелета. В настоящее время идентифицировано более 10 классов миозина. На рисунке 6 Г показано два варианта схемы строения миозина, который состоит из головки, шейки и хвоста. Молекула миозина состоит из двух больших полипептидов (тяжелых цепей) и четырех меньших (легких цепей). Эти полипептиды составляют молекулу с двумя глобулярными «головками», которые содержат оба вида цепей, и длинным стержнем («хвостом») из двух переплетенных тяжелых цепей. Хвост каждой молекулы миозина располагается вдоль оси толстого филамента, а две глобулярные головки выступают по бокам.На каждой глобулярной головке находятся по два участка связывания: для актина и для АТФ. Участки связывания АТФ обладают также свойствами фермента АТФазы, гидролизующей связанную молекулу АТФ.

Рис 7. Строение актина

Молекула актина

Это глобулярный белок, состоящий из одного полипептида, который полимеризуется с другими молекулами актина и образует две цепи, обвивающие друг друга (рис. 7 А ). Такая двойная спираль представляет собой остов тонкого филамента. На каждой молекуле актина есть участок связывания миозина. В покоящемся мышечном волокне взаимодействие между актином и миозином предотвращают два белка - тропонин и тропомиозин (рис. 7 Б ).

Тропонин - гетеротримерный белок. Он состоит из тропонина Т (отвечает за связывание с одиночной молекулой тропомиозина), тропонина С (связывает ион Са 2+) и тропонина I (связывает актин и ингибирует сокращение). Каждая молекула тропомиозина связана с одной гетеротримерной молекулой тропонина, которая регулирует доступ к участкам связывания миозина на семи мономерах актина, прилегающих к молекуле тропомиозина.

Чем предотвращается спонтанное взаимодействие миозина и актина?

В желобках двойной спирали актина располагаются два дополнительных регуляторных белка, которые предотвращают самопроизвольное взаимодействие актина и миозина. Эти белки, тропонин и тропомиозин, играют важную роль в процессе сокращения скелетной мышцы. Функция тропомиозина заключается в том, что в покое он закрывает (защищает) активные участки актинового филамента. Тропонин имеет три связывающих участка: один служит для связывания ионов кальция (тропонин С), другой прочно прикреплен к молекуле тропомиозина (тропонин Т), третий связан с актином (тропонин I). В покое эти регуляторные белки закрывают связывающие участки на молекуле актина и препятствуют формированию поперечных мостиков. Все эти микроструктурные компоненты вместе с митохондриями и другими органеллами клетки окружены клеточной мембраной, называемой сарколеммой.

Рис. 8. Действие Са 2+ во время активации миофибриллы.

А.Актиновая и миозиновая нити на продольном сечении волокна. Б. Они же на его поперечном сечении.

Исследования с помощью рентгеноструктурного анализа (малоугловое рентгеновское рассеяние) показали, что в отсутствие Са 2+ , т. е. при расслабленном состоянии миофибрилл, длинные молекулы тропомиозина располагаются так, что блокируют прикрепление поперечных миозиновых головок к актиновым нитям. И напротив, когда Са 2+ связывается с тропонином, тропомиозин попадает в желобок между двумя мономерами актина, обнажая участки прикрепления для поперечных мостиков (Рис . 8).

Если активные участки закрыты, то каким образом взаимодействуют актин и миозин?

Когда внутри клетки повышается концентрация ионов кальция, они связываются с тропонином С. Это приводит к изменениям конформации тропонина. В результате изменяется также трехмерная структура тропомиозина и обнажается активный участок молекулы актина. Сразу после этого головка миозина самопроизвольно связывается с активным участком актинового филамента, образуя поперечный мостик, который начинает двигаться и способствует укорочению саркомера. Наличие или отсутствие в клетке кальция частично регулируется сарколеммой (специализированной клеточной мембраной скелетной мышцы).

Какова функция кальция в скелетных мышцах?

Кальций обеспечивает открытие участков актиновой нити, связывающих миозин. Ионы кальция внутри клетки хранятся в СР(саркоплазматическом ретикуломе) и высобождаются после деполяризующей стимуляции. После высвобождения кальций диффундирует и связывается с белком - тропонином С. В результате конформация белка изменяется, он тянет молекулу тропомиозина и обнажает активные участки молекулы актина. Активные участки остаются открытыми все время, пока продолжается связывание кальция с тропонином С.

Рис. 9. Схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл.

Хранение и высвобождение ионов кальция . Расслабленная мышца содержит более 1 мкмоль Са 2+ на 1 г сырой массы. Если бы соли кальция не были изолированы в особых внутриклеточных хранилищах, обогащенные его ионами мышечные волокна находились бы в состоянии непрерывного сокращения.

Источником поступления Са 2+ в цитоплазму служит саркоплазматический ретикулум мышечного волокна.

Саркоплазматический ретикулум мышц гомологичен эндоплазматическому ретикулуму других клеток. Он располагается вокруг каждой миофибриллы наподобие «рваного рукава», сегментами которого окружены А- и I-полосы (Рис. 9). Концевые части каждого сегмента расширяются в виде так называемых латеральных мешков (терминальных цистерн), соединенных друг с другом серией более тонких трубок. В латеральных мешках депонируется Са 2+ , высвобождающийся после возбуждения плазматической мембраны (рис. 10 ).

Рис. 10. Схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы

Что такое поперечные трубочки (Т-трубочки) ?

Инвагинации на поверхности сарколеммы, расположенные на некотором расстоянии друг от друга. Благодаря Т-трубочкам внеклеточная жидкость может тесно контактировать с внутренними микроструктурами клетки. Т-трубочки представляют собой продолжение сарколеммы и также способны передавать потенциал действия на внутреннюю поверхность клетки. С Т-трубочками тесно взаимодействует саркоплазматический ретикулум (СР).

Что такое саркоплазматический ретикулум?

Специализированный эндоплазматический ретикулум, который состоит из везикул, ориентированных вдоль сократительных волокон скелетной мышцы. Эти везикулы осуществляют хранение, высвобождение во внутриклеточную жидкость и обратный захват ионов кальция. Специализированные расширенные участки СР называются концевыми цистернами. Концевые цистерны находятся в непосредственной близости от Т-трубочки и вместе с СР составляют структуру под названием триада. Особенности строения сарколеммы и триад играют важную роль в обеспечении саркомера ионами кальция, необходимыми для цикла поперечных мостиков.

Рис. 11. Роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

Возникнув в плазматической мембране (рис. 11 ), потенциал действия быстро распространяется по поверхности волокна и по мембране Т-трубочек вглубь клетки. Достигнув области Т-трубочек, прилегающей к латеральным мешкам, потенциал действия активирует потенциалзависимые «воротные» белки мембраны Т-трубочек, физически или химически сопряженные с кальциевыми каналами мембраны латеральных мешков. Таким образом, деполяризация мембраны Т-трубочек, обусловленная потенциалом действия, приводит к открыванию кальциевых каналов мембраны латеральных мешков, содержащих Са 2+ в высокой концентрации, и ионы Са 2+ выходят в цитоплазму. Повышение цитоплазматического уровня Са 2+ обычно бывает достаточным для активации всех поперечных мостиков мышечного волокна.

Процесс сокращения продолжается, пока ионы Са 2+ связаны с тропонином, т.е. до тех пор, пока их концентрация в цитоплазме не вернется к низкому исходному значению. Мембрана саркоплазматического ретикулума содержит Са-АТФазу - интегральный белок, осуществляющий активный транспорт Са 2+ из цитоплазмы обратно в полость саркоплазматического ретикулума. Как только что говорилось, Са 2+ высвобождается из ретикулума в результате распространения потенциала действия по Т-трубочкам; для возвращения Са 2+ в ретикулум нужно гораздо больше времени, чем для его выхода. Именно поэтому, повышенная концентрация Са 2+ в цитоплазме сохраняется в течение некоторого времени, и сокращение мышечного волокна продолжается после завершения потенциала действия.

Подведем итог. Сокращение обусловлено высвобождением ионов Са 2+ , хранящихся в саркоплазматическом ретикулуме. Когда Са 2+ поступает обратно в ретикулум, сокращение заканчивается и начинается расслабление.

Каковы особенности сарколеммы?

Электрический заряд на сарколемме, как и на других селективно проницаемых и возбудимых мембранах, образуется вследствие неодинакового распределения ионов. Проницаемость сарколеммы изменяется при стимуляции ацетилхолиновых рецепторов, расположенных в нервно-мышечном соединении. После достаточной стимуляции сарколемма может проводить деполяризующий сигнал (потенциал действия) по всей своей длине, а также в уникальную проводящую систему Т-трубочек.

Рис. 12. Феномен электромеханического сопряжения

Мышечные ткани объединяет способность к сокращению.

Особенности строения: сократительный аппарат, занимающий значительную часть в цитоплазме структурных элементов мышечной ткани и состоящий из актиновых и миозиновых филаментов, которые формируют органеллы специального назначения –миофибриллы .

Классификация мышечных тканей

1. Морфофункциональная классификация:

1) Поперечнополосатая, или исчерченная мышечная ткань: скелетная и сердечная;

2) Неисчерченная мышечная ткань: гладкая.

2. Гистогенетическая классификация (в зависимости от источников развития):

1) Соматического типа (из миотомов сомитов) – скелетная мышечная ткань (поперечнополосатая);

2) Целомического типа (из миоэпикардиальной пластинки висцерального листка спланхнотома) – сердечная мышечная ткань (поперечнополосатая);

3) Мезенхимного типа (развивается из мезенхимы) – гладкая мышечная ткань;

4) Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки желёз (гладкие миоциты);

5) Нейрального происхождения (из нервной трубки) – мионейральные клетки (гладкие мышцы, суживающие и расширяющие зрачок).

Функции мышечной ткани : перемещение тела или его частей в пространстве.

СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека. Именно эти мышцы задействованы при занятии спортом.

Гистогенез. Скелетная мышечная ткань развивается из клеток миотомов миобластов. Различают головные, шейные, грудные, поясничные, крестцовые миотомы. Они разрастаются в дорзальном и вентральном направлениях. В них рано врастают ветви спинномозговых нервов. Часть миобластов дифференцируется на месте (образуют аутохтонную мускулатуру), а другие с 3 недели внутриутробного развития мигрируют в мезенхиму и, сливаясь друг с другом, образуют мышечные трубки (миотубы ) с крупными центрально ориентированными ядрами. В миотубах происходит дифференцировка специальных органелл миофибрилл. Первоначально они располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра смещаются к периферии. Клеточные центры и микротрубочки исчезают, грЭПС значительно редуцируется. Такая многоядерная структура называется симпласт , а для мышечной ткани – миосимпласт . Часть миобластов дифференцируется в миосателлитоциты, которые располагаются на поверхности миосимпластов и впоследствии принимают участие в регенерации мышечной ткани.

Строение скелетной мышечной ткани

Рассмотрим строение мышечной ткани на нескольких уровнях организации живого: на органном уровне (мышца как орган), на тканевом (непосредственно мышечная ткань), на клеточном (строение мышечного волокна), на субклеточном (строение миофибриллы) и на молекулярном уровне (строение актиновых и миозиновых нитей).

На каритнке:

1 — мышца икроножная (органный уровень), 2 — поперечный срез мышцы (тканевой уровень) — мышечные волокна, между которыми РВСТ: 3 — эндомизий, 4 — нервное волокно, 5 — кровеносный сосуд; 6 — поперечный срез мышечного волокна (клеточный уровень): 7 — ядра мышечного волокна — симпласта, 8 — митохондрия между миофибриллами, синим цветом — саркоплазматический ретикулум; 9 — поперечный срез миофибриллы (субклеточный уровень): 10 — тонкие актиновые нити, 11 — толстые миозиновые нити, 12 — головки толстых миозиновых нитей.

1) Органный уровень: строение мышцы как органа.

Скелетная мышца состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов. Эндомизий – прослойки РВСТ между мышечными волокнами, где проходят кровеносные сосуды, нервные окончания. Перимизий – окружает 10-100 пучков мышечных волокон. Эпимизий – наружная оболочка мышцы, представлена плотной волокнистой тканью.

2) Тканевой уровень: строение мышечной ткани.

Структурно-функциональной единицей скелетной поперечнополосатой (исчерченной) мышечной ткани является мышечное волокно – цилиндрической формы образование диаметром 50 мкм и длиной от 1 до 10-20 см. Мышечное волокно состоит из 1) миосимпласта (образование его смотри выше, строение – ниже), 2) мелких камбиальных клеток – миосателлитоцитов , прилежащих к поверхности миосимпласта и располагающиеся в углублениях его плазмолеммы, 3) базальной мембраны, которой покрыта плазмолемма. Комплекс плазмолеммы и базальной мембраны называется сарколемма . Для мышечного волокна характерна поперечная исчерченность, ядра смещены на периферию. Между мышечными волокнами – прослойки РВСТ (эндомизий).

3) Клеточный уровень: строение мышечного волокна (миосимпласта).

Термин «мышечное волокно» подразумевает «миосимпласт», поскольку миосимпласт обеспечивает функцию сокращения, миосателлитоциты участвуют только в регенерации.

Миосимпласт , как и клетка, состоит из 3-х компонентов: ядра (точнее множества ядер), цитоплазмы (саркоплазма) и плазмолеммы (которая покрыта базальной мембраной и называется сарколемма). Почти весь объём цитоплазмы заполнен миофибриллами – органеллами специального назначения, органеллы общего назначения: грЭПС, аЭПС, митохондрии, комплекс Гольджи, лизосомы, а также ядра смещены на периферию волокна.

В мышечном волокне (миосимпласте) различают функциональные аппараты: мембранный , фибриллярный (сократительный) и трофический .

Трофический аппарат включает ядра, саркоплазму и цитоплазматические органеллы: митохондрии (синтез энергии), грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз изношенных структурных компонентов волокна).

Мембранный аппарат : каждое мышечное волокно покрыто сарколеммой, где различают наружную базальную мембрану и плазмолемму (под базальной мембраной), которая образует впячивания (Т -трубочки). К каждой Т -трубочке примыкают по две цистерны триаду : две L -трубочки (цистерны аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС концентрируются Са 2+ , необходимый при сокращении. К плазмолемме снаружи прилежат миосателлитоциты. При повреждении базальной мембраны запускается митотический цикл миосателлитоцитов.

Фибриллярный аппарат .Большую часть цитоплазмы исчерченных волокон занимают органеллы специального назначения – миофибриллы, ориентированы продольно, обеспечивающие сократительную функцию ткани.

4) Субклеточный уровень: строение миофибриллы.

При исследовании мышечных волокон и миофибрилл под световым микроскопом, отмечается чередование в них темных и светлых участков – дисков. Темные диски отличаются двойным лучепреломлением и называются анизотропными дисками, или А - дисками. Светлые диски не обладают двойным лучепреломлением и называются изотропными, или I -дисками.

В середине диска А имеется более светлый участок – Н -зона, где содержатся только толстые нити белка миозина. В середине Н -зоны (значит и А -диска) выделяется более темная М -линия, состоящая из миомезина (необходим для сборки толстых нитей и их фиксации при сокращении). В середине диска I расположена плотная линия Z , которая построена из белковых фибриллярных молекул. Z -линия соединена с соседними миофибриллами с помощью белка десмина, и поэтому все названные линии и диски соседних миофибрилл совпадают и создается картина поперечнополосатой исчерченности мышечного волокна.

Структурной единицей миофибриллы является саркомер (S ) это пучок миофиламентов заключенный между двумя Z -линиями. Миофибрилла состоит из множества саркомеров. Формула, описывающая структуру саркомера:

S = Z 1 + 1/2 I 1 + А + 1/2 I 2 + Z 2

5) Молекулярный уровень: строение актиновых и миозиновых филаментов .

Под электронным микроскопом миофибриллы представляют агрегаты из толстых, или миозиновых , и тонких, или актиновых , филаментов. Между толстыми филаментами располагаются тонкие филаменты (диаметр 7-8 нм).

Толстые филаменты, или миозиновые нити, (диаметр 14 нм, длина 1500 нм, расстояние между ними 20-30 нм) состоят из молекул белка миозина, являющимся важнейшим сократительным белком мышцы, по 300-400 молекул миозина в каждой нити. Молекула миозина – это гексамер, состоящий из двух тяжелых и четырех легких цепей. Тяжелые цепи представляют собой две спирально закрученные полипептидные нити. Они несут на своих концах шаровидные головки. Между головкой и тяжелой цепью находится шарнирный участок, с помощью которого головка может изменять свою конфигурацию. В области головок – легкие цепи (по две на каждой). Молекулы миозина уложены в толстой нити таким образом, что их головки обращены наружу, выступая над поверхностью толстой нити, а тяжелые цепи образуют стержень толстой нити.

Миозин обладает АТФ-азной активностью: высвобождающаяся энергия используется для мышечного сокращения.

Тонкие филаменты, или актиновые нити, (диаметр 7-8 нм), образованы тремя белками: актином, тропонином и тропомиозином. Основным по массе белком является актин, который образует спираль. Молекулы тропомиозина располагаются в желобке этой спирали, молекулы тропонина располагаются вдоль спирали.

Толстые нити занимают центральную часть саркомера – А -диск, тонкие занимают I - диски и частично входят между толстыми миофиламентами. Н -зона состоит только из толстых нитей.

В покое взаимодействие тонких и толстых нитей (миофиламентов) невозможно, т.к. миозин-связывающие участки актина заблокированы тропонином и тропомиозином. При высокой концентрации ионов кальция конформационные изменения тропомиозина приводят к разблокированию миозин-связывающих участков молекул актина.

Двигательная иннервация мышечного волокна . Каждое мышечное волокно имеет собственный аппарат иннервации (моторная бляшка) и окружено сетью гемокапилляров, располагающихся в прилежащей РВСТ. Этот комплекс называется мион. Группа мышечных волокон, которые иннервируются одним мотонейроном, называется нервно-мышечной единицей. Мышечные волокна в этом случае могут располагаться не рядом (одно нервное окончание может контролировать от одного до десятков мышечных волокон).

При поступлении нервных импульсов по аксонам двигательных нейронов происходит сокращение мышечного волокна .

Сокращение мышцы

При сокращении мышечные волокна укорачиваются, но длина актиновых и миозиновых филаментов в миофибриллах не изменяется, а происходит их движение друг относительно друга: миозиновые нити вдвигаются в пространства между актиновыми а, актиновые – между миозиновыми. В результате этого уменьшается ширина I -диска, H -полоски и уменьшается длина саркомера; ширина А -диска не изменяется.

Формула саркомера при полном сокращении:S = Z 1 + А + Z 2

Молекулярный механизм мышечного сокращения

1. Прохождение нервного импульса через нервно-мышечный синапс и деполяризация плазмолеммы мышечного волокна;

2. Волна деполяризации проходит по Т -трубочкам (впячивания плазмолеммы) до L -трубочек (цистерны саркоплазматического ретикулума);

3. Открытие кальциевых каналов в саркоплазматическом ретикулуме и выход ионов Са 2+ в саркоплазму;

4. Кальций диффундирует к тонким нитям саркомера, связывается с тропонином С, приводя к конформационным изменениям тропомиозина и освобождая активные центры для связывания миозина и актина;

5. Взаимодействие миозиновых головок с активными центрами на молекуле актина с образованием актино-миозиновых «мостиков»;

6. Миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, при этом актиновые нити подтягиваются в пространство между миозиновыми нитями к M -линии, сближая две Z -линии;

7. Расслабление: Са 2+ -АТФ-аза саркоплазматического ретикулума закачивает Са 2+ из саркоплазмы в цистерны. В саркоплазме концентрация Са 2+ становится низкой. Разрываются связи тропонина С с кальцием, тропомиозин закрывает миозин-связывающие участки тонких нитей и препятствует их взаимодействию с миозином.

Каждое движение головки миозина (присоединение к актину и отсоединение) сопровождается затратой энергии АТФ.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс. При избыточном растяжении мышцы возникает чувство боли.

Классификация и типы мышечных волокон

1. По характеру сокращения: фазные и тонические мышечные волокна. Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические мышечные волокна (медленные) обеспечивают поддержание статического напряжения или тонуса, что играет роль в сохранения определённого положения тела в пространстве.

2. По биохимическим особенностям и цвету выделяют красные и белые мышечные волокна . Цвет мышцы обусловлен степенью васкуляризации и содержанием миоглобина. Характерной особенностью красных мышечных волокон является наличие многочисленных митохондрий, цепи которых располагаются между миофибриллами. В белых мышечных волокнах митохондрий меньше и они располагаются равномерно в саркоплазме мышечного волокна.

3. По типу окислительного обмена : оксидативные, гликолитические и промежуточные . Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А -типа (гликолитические) с низкой активностью СДГ, С -тип (оксидативные) с высокой активностью СДГ. Мышечные волокна В -типа занимают промежуточное положение. Переход мышечных волокон от А -типа в С -тип маркирует изменения от анаэробного гликолиза к метаболизму, зависящему от кислорода.

У спринтеров (спортсменов, когда нужен быстрое недолгое сокращение, культуристов) тренировки и питание направлено на развитие гликолитических, быстрых, белых мышечных волкон : в них много запасов гликогена и энергия добывается преимущественно анаэолбным путём (белое мясо у курицы). У стайеров (спортсменов — марафонцев, в тех видах спорта, где необходима выносливость) преобладают оксидативные, медленные, красные волокна в мышцах — в них много митохондрий для аэробного гликолиза, кровеносных сосудов (нужен кислород).

4. В исчерченных мышцах различают два вида мышечных волокон: экстрафузальные , которые преобладают и обуславливают собственно сократительную функцию мышцы и интрафузальные , входящие в состав проприоцепторов – нервно-мышечных веретен.

Факторами, определяющими структуру и функцию скелетной мышцы являются влияние нервной ткани, гормональное влияние, местоположение мышцы, уровень васкуляризации и двигательной активности.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Сердечная мышечная тканьнаходится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям (непроизвольные сокращения).

Развивается из миоэпикардиальной пластинки (висцеральный листок спланхнотома мезодермы в шейном отделе), клетки которой размножаются митозом, а потом дифференцируются. В клетках появляются миофиламенты, которые далее формируют миофибриллы.

Строение . Структурная единица сердечной мышечной ткани – клетка кардиомиоцит. Между клетками находятся прослойки РВСТ с кровеносными сосудами и нервами.

Типы кардиомиоцитов : 1) типичные (рабочие, сократительные), 2) атипичные (проводящие), 3) секреторные .

Типичные кардиомиоциты

Типичные (рабочие, сократительные) кардиомиоциты – клетки цилиндрической формы, длиной до 100-150 мкм и диаметром 10-20 мкм. Кардиомиоциты образуют основную часть миокарда, соединены друг с другом в цепочки основаниями цилиндров. Эти зоны называют вставочными дисками , в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Каждый кардиомиоцит содержат одно или два ядра, саркоплазму и плазмолемму, окружённую базальной мембраной. Различают функциональные аппараты, такие же, как в мышечном волокне: мембранный , фибриллярный (сократительный), трофический, а также энергетический .

Трофический аппарат включает ядро, саркоплазму и цитоплазматические органеллы: грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз структурных компонентов клетки). Кардиомиоциты, как и олокна скелетной мышечной ткани, характеризуются наличием в их саркоплазме железосодержащего кислород-связывающего пигмента миоглобина, придающего им красный цвет и сходного по строению и функции с гемоглобином эритроцитов.

Энергетический аппарат представлен митохондриями и включениями, расщепление которых обеспечивает получение энергии. Митохондрии многочисленны, лежат рядами между фибриллами, у полюсов ядра и под сарколеммой. Энергия, необходимая кардиомиоцитам, получается путём расщепления: 1) основного энергетического субстрата этих клеток – жирных кислот , которые депонируются в виде триглицеридов в липидных каплях; 2) гликогена, находящегося в гранулах, расположенных между фибриллами.

Мембранный аппарат : каждая клетка покрыта оболочкой, состоящей из комплекса плазмолеммы и базальной мембраны. Оболочка образует впячивания (Т -трубочки). К каждой Т -трубочке примыкает одна цистерна (в отличие от мышечного волокна – там 2 цистерны) саркоплазматического ретикулума (видоизменённая аЭПС), образуя диаду : одна L -трубочка (цистерна аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС ионы Са 2+ накапливаются не так активно, как в мышечных волокнах.

Фибриллярный (сократительный) аппарат .Большую часть цитоплазмы кардиомиоцита занимают органеллы специального назначения – миофибриллы, ориентированы продольно и расположенные по периферии клетки.Сократительный аппарат рабочих кардиомиоцитовсходен со скелетными мышечными волокнами. При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т -трубочки широкие и образуют диады (одна Т -трубочка и одна цистерна сети), которые сходятся в области Z -линии.

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Функция типичных кардиомиоцитов : обеспечение силы сокращения сердечной мышцы.

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье. Проводящие кардиомиоциты характеризуются слабым развитием сократительного аппарата, светлой цитоплазмой и крупными ядрами. В клетках нет Т-трубочек и поперечной исчерченности, поскольку миофибриллы расположены неупорядоченно.

Функция атипичных кардиомиоцитов – генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

Секреторные кардиомиоциты

Секреторные кардиомиоцитынаходятся в предсердиях, преимущественно в правом; характеризуются отростчатой формой и слабым развитием сократительного аппарата. В цитоплзме, вблизи полюсов ядра – секреторные гранулы, содержащие натриуретический фактор, или атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Функция секреторных кардиомиоцитов : эндокринная.

Регенерация кардиомиоцитов. Для кардиомиоцитов характерна только внутриклеточная регенерация. Кардиомиоциты не способны к делению, у них отсутствуют камбиальные клетки.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Гладкая мышечная ткань образует стенки внутренних полых органов, сосудов; характеризуется отсутствием исчерченности, непроизвольными сокращениями. Иннервация осуществляется вегетативной нервной системой.

Структурно-функциональная единица неисчерченной гладкой мышечной ткани – гладкая мышечная клетка (ГМК), или гладкий миоцит. Клетки имеют веретенообразную форму длиной 20-1000 мкм и толщиной от 2 до 20 мкм. В матке клетки имеют вытянутую отростчатую форму.

Гладкий миоцит

Гладкий миоцит состоит из расположенного в центре ядра палочковидной формы, цитоплазмы с органеллами и сарколеммы (комплекс плазмолеммы и базальной мембраны). В цитоплазме у полюсов находится комплекс Гольджи, много митохондрий, рибосом, развит саркоплазматический ретикулум. Миофиламенты расположены косо или вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновых нитей больше и они прикрепляются к плотным тельцам, которые образованы специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина (микромиозин). Обладая разной длиной, они значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал, идущий по нервным волокнам, обуславливает выделение медиатора, что изменяет состояние плазмолеммы. Она образует колбовидные впячивания (кавеолы), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в цитооплазму: кавеолы отшнуровываются и вместе с ионами кальция попадают в клетку. Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин в гладких миоцитах способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом – киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Особые типы мышечных клеток

Миоэпителиальные клетки являются производными эктодермы, не имеют исчерченности. Окружают секреторные отделы и выводные протоки желез (слюнных, молочных, слезных). С железистыми клетками они связаны десмосомами. Сокращаясь, способствуют выделению секрета. В концевых (секреторных) отделах форма клеток отросчатая, звездчатая. Ядро в центре, в цитоплазме, преимущественно в отростках локализованы миофиламенты, которые образуют сократительный аппарат. В этих клетках есть и цитокератиновые промежуточные филаменты, что подчеркивает их сходство с эпителиоцитами.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства фибробластов (синтезируют межклеточное вещество) и гладких миоцитов (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины. Миофибробласты обеспечивают стягивание краёв раны.

Эндокринные гладкие миоциты – это видоизмененные ГМК, представляющие основной компонент юкстагломерулярного аппарата почек. Они находятся в стенке артериол почечного тельца, имеют хорошо развитый синтетический аппарат и редуцированный сократительный. Продуцируют фермент ренин, находящийся в гранулах и попадающий в кровь механизмом экзоцитоза.

Регенерация гладкой мышечной ткани. Гладкие миоциты характеризуются внутриклеточной регенерацией. При повышении функциональной нагрузки происходит гипертрофия миоцитов и в некоторых органах гиперплазия (клеточная регенерация). Так, при беременности гладко-мышечные клетки матки могут увеличиваться в 300 раз.