Все рыбы имеют плавательный пузырь. Описание плавательного воздушного пузыря у рыб. Полный текст новости

Организм рыб достаточно сложен и многофункционален. Возможность пребывания под водой с совершением плавательных манипуляций и поддержанием стабильного положения обуславливается специальным строением тела. Помимо привычных даже для человека органов, в теле многих подводных жителей предусматриваются ответственные части, позволяющие обеспечивать плавучесть и стабилизацию. Существенное значение в данном контексте имеет плавательный пузырь, который является продолжением кишечника. По мнению многих ученых, этот орган можно рассматривать в качестве предшественника человеческих легких. Но у рыб он выполняет свои первичные задачи, которые не ограничиваются только лишь функцией своеобразного балансира.

Формирование плавательного пузыря

Развитие пузыря начинается в личинке, из передней кишки. Большинство пресноводных рыб сохраняют этот орган на протяжении всей жизни. На момент высвобождения из личинки в пузырях мальков пока еще отсутствует газообразный состав. Для его наполнения воздухом рыбешкам приходится подниматься к поверхности и самостоятельно захватывать необходимую смесь. На этапе эмбрионального развития плавательный пузырь формируется как спинной вырост и находится под позвоночником. В дальнейшем канал, который соединяет эту часть с пищеводом, исчезает. Но это происходит не у всех особей. По признаку присутствия и отсутствия этого канала рыбы делятся на закрыто- и открытопузырные. В первом случае происходит зарастание воздушного протока, а газы выводятся через кровеносные капилляры на внутренних стенках пузыря. У открытопузырных рыб этот орган связан с кишечником через воздушный проток, по которому и происходит выведение газов.

Газовое наполнение пузыря

Газовые железы стабилизируют давление пузыря. В частности, они способствуют его повышению, а при необходимости понижения задействуется красное тело, сформированное густой капиллярной сетью. Так как выравнивание давления у открытопузырных рыб происходит медленнее, чем у закрытопузырных видов, они могут быстро подниматься из водных глубин. При ловле особей второго типа рыбаки иногда наблюдают, как плавательный пузырь высовывается изо рта. Это происходит из-за того, что емкость раздувается в условиях быстрого подъема на поверхность из глубины. К таким рыбам, в частности, можно отнести судака, окуня и колюшку. Некоторые хищники, которые обитают на самом дне, имеют сильно редуцированный пузырь.

Гидростатическая функция

Рыбный пузырь является многофункциональным органом, но главная его задача заключается в стабилизации положения в разных условиях под водой. Это функция гидростатического характера, которую, к слову, могут заменять и другие части тела, что подтверждают примеры рыб, не имеющих такого пузыря. Так или иначе, основная функция помогает рыбам оставаться на определенных глубинах, где вес вытесняемой телом воды соответствует массе самой особи. На практике гидростатическая функция может проявляться следующим образом: в момент активного погружения тело сжимается вместе с пузырем, а при совершении всплытия, напротив, расправляется. В процессе погружения масса вытесняемого объема сокращается и становится меньше, чем вес рыбы. Поэтому рыба может опускаться вниз без особых затруднений. Чем ниже погружение, тем выше становится сила давления и тем больше сжимается тело. Обратные процессы происходят в моменты всплытия - газ расширяется, в результате чего масса облегчается и рыба с легкостью поднимается вверх.

Функции органов чувств

Наряду с гидростатической функцией, этот орган выступает и в некотором роде слуховым аппаратом. С его помощью рыбы могут воспринимать шумовые и вибрационные волны. Но такой способностью располагают далеко не все виды - в категорию с данной способностью включают карпов и сомов. Но звуковое восприятие обеспечивает не сам плавательный пузырь, а целая группа органов, в которую он входит. Специальные мышцы, к примеру, могут провоцировать колебания стен пузыря, что и вызывает ощущения вибраций. Примечательно, что у некоторых видов, которые имеют такой пузырь, полностью отсутствует гидростатика, но зато сохранена возможность восприятия звуков. Это относится в основном к которые большую часть жизни проводят на одном уровне под водой.

Защитные функции

В моменты опасности гольяны, например, могут выпускать из пузыря газ и производить специфические звуки, различимые их сородичами. При этом не стоит думать, что звукообразование носит примитивный характер и не может восприниматься другими обитателями подводного мира. Горбыли хорошо известны рыбакам урчащими и хрюкающими звуками. Более того, плавательный пузырь, у рыб тригл имеющийся, буквально наводил ужас на команды американских подводных лодок во время войны - столь выразительны были издаваемые звуки. Обычно подобные проявления имеют место в моменты нервного перенапряжения рыб. Если в случае с гидростатической функцией работа пузыря происходит под воздействием и внешнего давления, то звукообразование возникает как особый защитный сигнал, образуемый исключительно рыбой.

У каких рыб нет плавательного пузыря?

Лишены этого органа парусниковые рыбы, а также разновидности, которые ведут придонный образ жизни. Практически все глубоководные особи также обходятся без плавательного пузыря. Это как раз тот случай, когда плавучесть может обеспечиваться альтернативными способами - в частности, благодаря жировым накоплениям и их способности не сжиматься. Сохранению стабильности положения способствует также низкая плотность тела у некоторых рыб. Но встречается и другой принцип поддержания гидростатической функции. Например, плавательный пузырь у акулы не предусмотрен, поэтому она вынуждена поддерживать достаточную глубину погружения за счет активных манипуляций телом и плавниками.

Заключение

Неспроста многие ученые проводят параллели между и рыбьим пузырем. Объединяет эти части тела эволюционная взаимосвязь, в контексте которой стоит рассматривать и современное строение рыб. Тот факт, что плавательный пузырь имеется далеко не у всех видов рыбьих, обуславливает его противоречивость. Это вовсе не значит, что данный орган является ненужным, однако процессы его атрофии и редуцирования свидетельствуют о возможности обходиться и без этой части. В одних случаях рыбы используют для той же гидростатической функции внутренний жир и плотность нижней части тела, а в других - плавники.

На вопрос Какие рыбы не имеют плавательного пузыря? Почему они не тонут? заданный автором КириллЛещенко лучший ответ это У большинства рыб, совершающих быстрые вертикальные перемещения, плавательный пузырь редуцирован либо совершенно отсутствует. Из енисейских рыб к ним относятся щиповка и сибирский голец, обитающие главным образом у дна. Удержание в толще воды осуществляется ими за счет мускульных движений. Нет плавательного пузыря и у морских рыб, обитающих на больших глубинах. У глубоководных рыб плавучесть обеспечивается в основном за счет жира, основное свойство которого - несжимаемость. В условиях огромного давления на глубине это является благоприобретением, поскольку газ из плавательного пузыря выдавился бы наружу немедленно.
Парусник (Istiophorus Lacepède, 1801) - род семейства Парусниковых отряда Окунеобразных, включающий два вида рыб. Обитает в тропических водах Индийского океана (Istiophorus platypterus) и в центральной и западной частях Тихого океана (Istiophorus albicans). Парусники и родственные виды семейств копьрылых (Istiophoridae) и мечерылых не имеют плавательного пузыря: при такой скорости передвижения и перемещения в вертикальном направлении все системы газообмена не могут обеспечить поддержание давления в нём на оптимальном уровне, таким образом он мог бы являться только помехой - эти рыбы обладают отрицательной плавучестью, компенсируя это за счет несимметричности тела относительно горизонтальной плоскости (подъемная сила, как у крыла самолета) и мышечных усилий, или за счет наклонных плоскостей грудных и брюшных плавников при медленном движении. Все эти особенности анатомии и морфологии позволяют этим рыбам быть самыми быстрыми водными животными.
Беспузырный окунь на глубине семьсот метров. Эти рыбы обитают в глубинных водах Атлантики и не имеют плавательного пузыря. Они передвигаются по грунту с помощью своих плавников.
Рыба камбала имеет сильно сжатое с боков тело, оно широкое и короткое. У камбалы нет плавательного пузыря. Камбала отличается от других рыб, тем, что всю свою жизнь проводит на боку, так она плавает и лежит на дне, только если ей угрожает опасность, камбала может повернуться на ребро и быстро плыть.
Акулы принадлежат к типу позвоночные, классу хрящевые рыбы, подклассу пластиножаберные (эласмобранхии- elasmobranchh), отряд акулы. К подклассу эласмобранхии относятся и скаты. Этот подкласс, включающий все виды акул, скатов и промежуточных форм, иногда называют селахиями. В настоящее время известно около 360 видов акул. И без сомнения, ученым предстоит открыть еще множесто новых.
Характерной чертой всех акул является хрящевой, а не костный скелет, 5-7 жаберных щелей по бокам от головы, отсутсвие жаберной крышки, кожа, покрытая плакоидной чешуей, верхняя челюсть, соединенная с черепной коробкой только соединительнотканными связками или сочленениями хрящей, отсутствие плавательного пузыря и неравнолопостный хвостовой плавник.

В полном разгаре отпускная пора. Мы откладываем в сторону книги и гаджеты, отправляясь загорать, есть фрукты, играть в пляжный волейбол и, конечно же, плавать. Ну а тот, кто не умеет плавать, завидует с берега и думает: вот бы и мне плавать, как рыбка, а главное, не тонуть! И правда, почему рыбы не тонут?

А вот плотность человека при обычном вдохе равна плотности воды - то есть у человека с точки зрения физики утонуть шансов меньше.

Но у рыбы ведь есть плавательный пузырь. И правда, у некоторых рыб он есть - но это абсолютно не все рыбы. Вывести здесь какое-то общее правило: у кого пузырь есть, а у кого нет - пока не получается. Из двух близкородственных видов со сходным образом жизни один может не иметь пузыря, у другого он вполне развит. Но абсолютно точно пузыря нет у донных и глубоководных рыб: одни просто сидят на дне, как камбала, а другие получили бы взрыв пузыря из-за огромного давления воды.

Нет пузыря также и у акул, поэтому они вынуждены постоянно находиться в движении. Стоит им замедлиться, как они тут же начинают погружаться, поэтому акулы непрерывно двигаются. Как же они спят? А спят они одним полушарием, другое в это время отслеживает добычу. Кроме того, они не имеют тяжёлого позвоночника из костей - у них он сделан из хрящевой ткани.

Тем не менее, некоторые акулы, например, песчаные, сами создают себе плавательный пузырь, просто набирая воздуха в желудок. Что вполне понятно, потому что вообще любой плавательный пузырь - это кусок кишечника, в который набрали воздух.

Но мы же тоже можем так сделать - набрать в лёгкие воздуха и не тонуть! Более того, учёные утверждают, что лёгкие и плавательный пузырь - это органы, имеющие единое происхождение. Какая-то древняя рыба в девонском периоде набрала в лёгкие воздуха и перестала тонуть - так у неё развился плавательный пузырь. Или наоборот.

Согласно современным научным представлениям, действительно, лёгкие берут начало от воздушного пузыря. Во-первых, строение примитивных лёгких во многом напоминает строение воздушного пузыря рыб. Во-вторых, если проследить за человеческим эмбрионом, его лёгкие развиваются из небольшого выпячивания пищевода - точно так же, как формируется и воздушный пузырь. Современные рыбы умеют дышать и в воде, и на суше - они активно пользуются своими парными воздушными пузырями, по сути, примитивными лёгкими.

Эти сухопутные рыбы легко выходят из воды и прекрасно прыгают по суше, отталкиваясь плавниками. Недавнее исследование учёных из Университета Нового Южного Уэльса в Австралии установило, что 33 различные семейства рыб имеют хотя бы одного представителя, который может какое-то время находиться на суше. Это говорит о том, что некоторые современные рыбы унаследовали данную способность от общего предка. А произошло это из-за приливов и отливов.

Подводя итог, можно сказать о том, что наша возможность держаться на воде примерно равна возможности рыб, так как плавательный пузырь и лёгкие - это практически одно и то же. Нужно только не забыть набрать в них побольше воздуха!

Один мой родственник, весьма увлечённый рыбной ловлей, очень любил такой деликатес: обжаренный над спичкой рыбий плавательный пузырь… не могу судить о достоинствах такого блюда – но попробовать, в принципе, можно, интересно было бы узнать, каково на вкус… а ещё интереснее – разобраться, что это за орган и для чего он нужен рыбам?

Возникает он во внутриутробном периоде – и в это время представляет собой вырост кишечной трубки, расположенный над позвоночником, и при этом пузырь связан с кишечной трубкой воздушным каналом. В дальнейшем – по мере развития пищеварительной системы – из этого участка кишечной трубки сформируется пищевод. Будет ли с ним по-прежнему связан плавательный пузырь? У некоторых видов рыб – да (их называют физостомами, или открытопузырными), и через этот канал в него будут входить газы, а также выходить из него. Так дело обстоит у сельди, карпа, осетровых – эти рыбы могут регулировать объём плавательного пузыря путём заглатывания воздуха.

Но есть и такие рыбы, у которых канал, связывающий плавательный пузырь с пищеварительной системой, зарастает. Как же пузырь наполняется газами у таких рыб – закрытопузырных, или физоклистов? Разумеется, природа об этом позаботилась: на стенке плавательного пузыря у них есть густое сплетение капилляров, оно называется красным телом. Вот через кровь, проходящую через эти капилляры, и выделяются, а также поглощаются газы. К закрытопузырным принадлежат, например, судак и окунь.

Как «работает» плавательный пузырь? Прежде всего, это «гидростатический аппарат» рыбы. Чем глубже находится рыба, тем сильнее сжат газ в её плавательном пузыре, тем больше её удельный вес – и тем быстрее она погружается. Напротив, чем на меньшей глубине находится рыба, тем более расширяется газ в плавательном пузыре, тем удельный вес меньше, тем сильнее рыба выталкивается к поверхности.

Обо всех этих изменениях давления немедленно «узнаёт» мозг рыбы, куда посылают сигналы нервные окончания, расположенные в стенках плавательного пузыря, и в соответствии с этими сигналами мозг «управляет» мышцами рыбы.

На определённой глубине давление внутри и снаружи выравнивается – и тогда рыбе не нужно совершать вообще никаких движений, чтобы остаться на этой глубине (с точки зрения гидростатики такое состояние называется нулевой плавучестью). Это соответствует «естественной среде обитания» рыбы, где она проводит большую часть времени. Значение такого эволюционного приобретения мы поймём, если посмотрим на рыб, у которых плавательного пузыря нет – например, на акул. Эти морские хищники постоянно двигаются, даже когда отдыхают – иначе они начнут «падать вниз» в толще воды!

Впрочем, при всей полезности плавательного пузыря, есть рыбы, которым он бы только мешал. Как уже говорилось, он помогает рыбам «стабилизировать» своё положение в толще воды, соответственно, быстро передвигаться в воде вверх и вниз с ним было бы непросто, и у тех рыб, которые делают это постоянно, плавательного пузыря нет – например, у скумбрии, у тунца.

Не нужен плавательный пузырь и глубоководным рыбам: на большой глубине давление воды такое сильное, что плавательный пузырь его попросту не выдержал бы – оно в два счёта вытолкнуло бы из него весь газ!

Гидростатическая функция – главная задача плавательного пузыря, но не единственная. Некоторые рыбы – например, карпы и сомы – с его помощью воспринимают ударные и звуковые волны. А у некоторых рыб плавательный пузырь является источником… голоса. Да, рыбы далеко не такие молчуны, как принято считать! Во время Второй мировой войны американцы на своих подводных лодках долго не могли понять, кто же издаёт под водой урчащие звуки, искали вражеские субмарины, а оказалось – это были рыбы триглы. И свои «концерты» они дают именно с помощью плавательных пузырей.

Как видим, плавательный пузырь не так прост, как кажется. А главное – у него оказалось большое эволюционное будущее: из него впоследствии сформировались лёгкие, позволившие живым существам выйти на сушу.

У большинства более древних групп рыб (среди костистых - почти у всех сельдеобразных и карпообразных, а также у двоякодышащих, многоперов, костных и хрящевых ганоидов) плавательный пузырь соединен с кишечником при помощи специального протока - ductus pneumaticus. У остальных рыб - окунеобразных, трескообразных и других костистых, во взрослом состоянии связь плавательного пузыря с кишечником не сохраняется.

У некоторых сельдевых и анчоусов, например, у океанической сельди - Ctupea harengus L., шпрота - Sprattus sprattus (L.), хамсы - Engraulis encrasicholus (L.), плавательный пузырь имеет два отверстия. Кроме ductus pneumaticus, в задней части пузыря имеется еще наружное отверстие, открывающееся непосредственно за анальным (Световидов, 1950). Это отверстие позволяет рыбе при быстром погружении или поднятии с глубины на поверхность за короткий срок удалять из плавательного пузыря излишний газ. При этом у опускающейся на глубину рыбы излишний газ появляется в пузыре под воздействием возрастающего по мере погружения рыбы давления воды на ее организм. В случае поднятия при резком уменьшении наружного давления газ в пузыре стремится занять возможно больший объем, и в связи с этим част.о рыба также вынуждена удалить его.

Всплывающая к поверхности стая сельди часто может быть обнаружена по многочисленным пузырькам воздуха, поднимающимся из глубины. В Адриатическом море у побережья Албании (Влорский залив и др.) при лове сардины на свет албанские рыбаки безошибочно предсказывают скорое появление - этой рыбы из глубины по появлению выделяемых ею пузырьков газа. Рыбаки так и говорят: «Пена появилась-сейчас появится и сардинка» (сообщение Г. Д. Полякова).

Наполнение газом плавательного пузыря происходит у открытопузырных рыб и, видимо, у большинства рыб с замкнутым пузырем не сразу по выходе из икринки. Пока выведшиеся свободные эмбрионы проходят стадию покоя, подвесившись к стеблям растений или лежа на дне, газа в плавательном пузыре у них нет. Наполнение плавательного пузыря происходит за счет заглатывания газа извне. У многих рыб проток, соединяющий кишечник с пузырем, во взрослом состоянии отсутствует, а у их личинок он имеется, и именно через него происходит наполнение газом их плавательного пузыря. Это наблюдение подтверждается следующим опытом. Из икры окуневых рыб выводились личинки в таком сосуде, поверхность воды в котором была отделена от дна тонкой сеткой, непроницаемой для личинок. В естественных условиях наполнение пузыря газом происходит у окуневых рыб на второй-третий день по выходе из икры. В опытном же сосуде рыбы выдерживались до пяти-вось- мидневного возраста, после чего преграда, отделявшая их,от поверхности воды, удалялась. Однако к этому времени связь между плавательным пузырем и кишечником прерывалась, и пузырь оставался не наполненным газом. Таким образом, первоначальное наполнение плавательного пузыря газом и у от- крытопузырных, и у большинства рыб с замкнутым плавательным пузырем происходит одинаково.

У судака газ в плавательном пузыре появляется, когда рыбка достигает примерно 7,5 мм длины. Если к этому времени плавательный пузырь остается не заполненным газом, то личинки с уже замкнувшимся пузырем, даже получая возможность заглатывать пузырьки газа, переполняют им кишечник, но газ уже не попадает в пузырь и выходит у них через анальное отверстие (Крыжановский, Дислер и Смирнова, 1953),

Из сосудистой системы (по неизвестным причинам) не может начаться выделение газа в плавательный пузырь до тех пор, пока хотя бы немного газа не попадает в него извне.

Дальнейшее регулирование количества и состава газа в плавательном пузыре у разных рыб осуществляется различными способами. У рыб, имеющих соединение плавательного пузыря с кишечником, поступление и выделение газа из плавательного пузыря происходит в значительной степени через ductus pneumaticus. У рыб с замкнутым плавательным пузырем после первоначального наполнения газом извне дальнейшие изменения количества и состава газа происходят путем его выделения и поглощения кровью. У таких рыб на внутренней стенке пузыря имеется. Красное те л о- чрезвычайно густо пронизанное кровеносными капиллярами образование. Так, в двух красных телах, находящихся в плавательной пузыре угря, имеется. 88 000 венозных и 116 000 артериальных капилляров общей длиной 352 и 464 м. В то же время объем всех капилляров в красных телах угря составляет всего, лишь 64 ммъ, т. е. не более капли
средней величины. Красное тело варьирует у различных рыб от небольшого пятна до мощной газоотделительной железы, состоящей из цилиндрического железистого эпителия. Иногда красное тело встречается и у рыб, обладающих ductus pneumaticus, но в таких случаях оно обычно бывает менее развито, чем у рыб с замкнутым пузырем.

По составу газа в плавательном пузыре отличаются как различные виды рыб, так и разные особи одного и того же вида. Так, у линя кислорода содержится обычно около 8%, у окуня - 19-25%, у щуки - около 19%, у плотвы -5-6%. Поскольку из кровеносной системы могут проникать в плавательный пузырь преимущественно кислород и углекислота, то в наполненном пузыре обычно преобладают именно эти газы; азот при этом составляет весьма малый процент. Напротив, при удалении газа из плавательного пузыря через кровеносную систему, процентное содержание азота в пузыре резко возрастает. Как правило, у морских рыб кислорода в плавательном пузыре содержится больше, чем у пресноводных. По-видимому, это связано, главным образом, с преобладанием среди морских рыб форм с замкнутым плавательным пузырем. Особенно велико содержание кислорода в плавательном пузыре у вторично глубоководных рыб.

Давление газа в плавательном пузыре у рыб обычно тем или иным путем передается к слуховому лабиринту (рис. 8) .

Так, у сельдевых, тресковых и некоторых других рыб передняя часть плавательного пузыря имеет парные выросты, которые доходят до затянутых перепонкой отверстий слуховых капсул (у тресковых), или даже входят внутрь их (у сельдевых). У карпообразных передача давления плавательного пузыря к лабиринту осуществляется при помощи так называемого Веберова аппарата - ряда косточек, соединяющих плавательный пузырь с лабиринтом.

Плавательный пузырь у рыб служит.

Рис. 8. Схема соединения плавательного пузыря с органом слуха у рыб:

1 -у океанической сельди Clupea harengus L. (сельдеобразные); -2 - у карпа Cyprinus car- pio L. (карпообразные); 3i- у Physiculus japonicus Hilg. (трескообразные)

Плавательный пузырь служит не только для изменения удельного веса рыбы, но он играет роль и органа, определяющего величину наружного давления. У ряда рыб, например у большинства вьюновых - Cobitidae, ведущих донный образ жизни, плавательный пузырь сильно редуцирован, и его функция как органа, воспринимающего изменения давления, является основной. Рыбы могут воспринимать даже незначительные изменения давления; их поведение меняется при изменении атмосферного давления, например, перед грозой. В Япг>нии некоторых рыб специально содержат для этой цели в аквариумах и по изменению их поведения судят о предстоящем изменении погоды.

За исключением некоторых сельдевых, рыбы, обладающие плавательным пузырем, не могут быстро переходить из поверхностных слоев на глубины и обратно. В связи с этим у большинства видов, совершающих быстрые вертикальные перемещения (тунцы, обыкновенная скумбрия, акулы), плавательный пузырь либо совершенно отсутствует, либо редуцирован, а удержание в толще воды осуществляется за счет мускульных движений.

Редуцируется плавательный пузырь у рыб.

Редуцируется плавательный пузырь и у многих донных рыб, например, у многих бычков - Gobiidae, морских собачек - Blen- niidae, вьюновых - Cobitidae и некоторых других. Редукция пузыря у донных рыб, естественно, связана с необходимостью " обеспечить больший удельный вес тела. У некоторых близкородственных видов рыб часто плавательный пузырь развит в различной степени. Так, например, среди бычков у одних, ведущих пелагический образ жизни (Aphya), он имеется; у других, как, например, у Gobius tiiger Nordm., он сохраняется только у пелагических личинок; у бычков, личинки которых также ведут донный образ жизни, например, у Neogobius melanostomus (Pall.), плавательный пузырь оказывается редуцированным и у личинок и у взрослых.

У глубоководных рыб в связи с жизнью на больших глубинах плавательный пузырь часто теряет связь с кишечником, так как при огромных давлениях газ выдавливался бы из пузыря наружу. Это свойственно даже представителям тех групп, например, Opistoproctus и Argentina из отряда сельдеобразных, у которых, виды, живущие близ поверхности, имеют ductus pneumaticus. У других глубоководных рыб плавательный пузырь может вообще редуцироваться, как, например, у некоторых Stomiatoidei.